IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
Yusheng Li , Yiming Li , Jiangjian Shi , Licheng Lou , Xiao Xu , Yuqi Cui , Jionghua Wu , Dongmei Li , Yanhong Luo , Huijue Wu , Qing Shen , Qingbo Meng
{"title":"Accelerating defect analysis of solar cells via machine learning of the modulated transient photovoltage","authors":"Yusheng Li ,&nbsp;Yiming Li ,&nbsp;Jiangjian Shi ,&nbsp;Licheng Lou ,&nbsp;Xiao Xu ,&nbsp;Yuqi Cui ,&nbsp;Jionghua Wu ,&nbsp;Dongmei Li ,&nbsp;Yanhong Luo ,&nbsp;Huijue Wu ,&nbsp;Qing Shen ,&nbsp;Qingbo Meng","doi":"10.1016/j.fmre.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Fast and non-destructive analysis of material defect is a crucial demand for semiconductor devices. Herein, we are devoted to exploring a solar-cell defect analysis method based on machine learning of the modulated transient photovoltage (m-TPV) measurement. The perturbation photovoltage generation and decay mechanism of the solar cell is firstly clarified for this study. High-throughput electrical transient simulations are further carried out to establish a database containing millions of m-TPV curves. This database is subsequently used to train an artificial neural network to correlate the m-TPV and defect properties of the perovskite solar cell. A Back Propagation neural network has been screened out and applied to provide a multiple parameter defect analysis of the cell. This analysis reveals that in a practical solar cell, compared to the defect density, the charge capturing cross-section plays a more critical role in influencing the charge recombination properties. We believe this defect analysis approach will play a more important and diverse role for solar cell studies.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1650-1656"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823000304","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

快速、无损地分析材料缺陷是半导体器件的关键需求。在此,我们致力于探索一种基于机器学习的调制瞬态光电压(m-TPV)测量的太阳能电池缺陷分析方法。本研究首次阐明了太阳能电池的微扰光电压产生和衰减机理。进一步进行了高通量电瞬态仿真,建立了包含数百万m-TPV曲线的数据库。该数据库随后用于训练人工神经网络,以关联钙钛矿太阳能电池的m-TPV和缺陷特性。筛选出一种反向传播神经网络,并将其应用于电池的多参数缺陷分析。分析表明,在实际太阳能电池中,电荷捕获截面对电荷复合性能的影响比缺陷密度更重要。我们相信这种缺陷分析方法将在太阳能电池的研究中发挥更重要和多样化的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerating defect analysis of solar cells via machine learning of the modulated transient photovoltage

Accelerating defect analysis of solar cells via machine learning of the modulated transient photovoltage
Fast and non-destructive analysis of material defect is a crucial demand for semiconductor devices. Herein, we are devoted to exploring a solar-cell defect analysis method based on machine learning of the modulated transient photovoltage (m-TPV) measurement. The perturbation photovoltage generation and decay mechanism of the solar cell is firstly clarified for this study. High-throughput electrical transient simulations are further carried out to establish a database containing millions of m-TPV curves. This database is subsequently used to train an artificial neural network to correlate the m-TPV and defect properties of the perovskite solar cell. A Back Propagation neural network has been screened out and applied to provide a multiple parameter defect analysis of the cell. This analysis reveals that in a practical solar cell, compared to the defect density, the charge capturing cross-section plays a more critical role in influencing the charge recombination properties. We believe this defect analysis approach will play a more important and diverse role for solar cell studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信