CO2吸附用共价有机框架:基本原理、结构特征及合成

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED
Tooba Saeed, Abdul Naeem, Bashir Ahmad, Shahzaib Ahmad, Shaista Afridi, Farida Khan, Israf Ud Din, Nazish Huma Khan
{"title":"CO2吸附用共价有机框架:基本原理、结构特征及合成","authors":"Tooba Saeed,&nbsp;Abdul Naeem,&nbsp;Bashir Ahmad,&nbsp;Shahzaib Ahmad,&nbsp;Shaista Afridi,&nbsp;Farida Khan,&nbsp;Israf Ud Din,&nbsp;Nazish Huma Khan","doi":"10.1007/s10934-023-01504-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the last ten years, covalent organic frameworks (COFs) which are crystalline, polymers with greater porosity and surface area, have attracted much research interest. The COF materials are made by covalently bonding organic molecules in a pattern that repeats to create a permeable crystal that is perfect for the sorption and storage of gas. They are expedient in the adsorption of contaminants such as CO<sub>2</sub> due to their appealing qualities including durability, improved reactivity, permanent porosity, and increased surface area. This study is an effort to report topology patterns, pore design, Synthetic Reactions of COFs, different methods for the synthesis of COFs and their applications for CO<sub>2</sub> adsorption. This review further focused on the current literature on the adsorption of CO<sub>2</sub>.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 1","pages":"33 - 48"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent organic frameworks for CO2 adsorption: fundamentals, structural features and synthesis\",\"authors\":\"Tooba Saeed,&nbsp;Abdul Naeem,&nbsp;Bashir Ahmad,&nbsp;Shahzaib Ahmad,&nbsp;Shaista Afridi,&nbsp;Farida Khan,&nbsp;Israf Ud Din,&nbsp;Nazish Huma Khan\",\"doi\":\"10.1007/s10934-023-01504-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the last ten years, covalent organic frameworks (COFs) which are crystalline, polymers with greater porosity and surface area, have attracted much research interest. The COF materials are made by covalently bonding organic molecules in a pattern that repeats to create a permeable crystal that is perfect for the sorption and storage of gas. They are expedient in the adsorption of contaminants such as CO<sub>2</sub> due to their appealing qualities including durability, improved reactivity, permanent porosity, and increased surface area. This study is an effort to report topology patterns, pore design, Synthetic Reactions of COFs, different methods for the synthesis of COFs and their applications for CO<sub>2</sub> adsorption. This review further focused on the current literature on the adsorption of CO<sub>2</sub>.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 1\",\"pages\":\"33 - 48\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-023-01504-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-023-01504-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

近十年来,共价有机框架(COFs)这种具有较大孔隙率和表面积的结晶聚合物引起了广泛的研究兴趣。共价有机框架材料是通过共价键将有机分子以重复的模式结合在一起,形成一种可渗透的晶体,非常适合吸附和储存气体。由于 COF 材料具有耐久性、更好的反应性、永久多孔性和更大的表面积等吸引人的特质,因此在吸附二氧化碳等污染物方面非常方便。本研究旨在报告 COFs 的拓扑模式、孔隙设计、合成反应、不同的 COFs 合成方法及其在二氧化碳吸附中的应用。本综述进一步关注了目前有关 CO2 吸附的文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Covalent organic frameworks for CO2 adsorption: fundamentals, structural features and synthesis

Covalent organic frameworks for CO2 adsorption: fundamentals, structural features and synthesis

In the last ten years, covalent organic frameworks (COFs) which are crystalline, polymers with greater porosity and surface area, have attracted much research interest. The COF materials are made by covalently bonding organic molecules in a pattern that repeats to create a permeable crystal that is perfect for the sorption and storage of gas. They are expedient in the adsorption of contaminants such as CO2 due to their appealing qualities including durability, improved reactivity, permanent porosity, and increased surface area. This study is an effort to report topology patterns, pore design, Synthetic Reactions of COFs, different methods for the synthesis of COFs and their applications for CO2 adsorption. This review further focused on the current literature on the adsorption of CO2.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信