{"title":"钚的密度泛函理论","authors":"P. Söderlind, A. Landa, B. Sadigh","doi":"10.1080/00018732.2019.1599554","DOIUrl":null,"url":null,"abstract":"We review developments in the theoretical description and understanding of plutonium in terms of a metal with itinerant (band) 5f electrons. Within this picture most facets of this remarkable and anomalous material are accurately described by first-principle, parameter-free, density-functional-theory (DFT) calculations. We show that the model explains plutonium’s phase stability, elasticity, lattice vibrations, electronic structure, alloy properties, and magnetism. Fluctuations are addressed by means of constrained DFT calculations and new light is shed on the anomalous properties of δ plutonium, including explaining its negative thermal expansion. Effects of alloying and point defects in plutonium are also addressed. It is further emphasized that strong electron correlations, originating from a large intra-atomic Coulomb repulsion (∼4 eV) of the 5f electrons, that has often been assumed for plutonium in the literature, is inconsistent with the experimental phase diagram of plutonium.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":35.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2019.1599554","citationCount":"40","resultStr":"{\"title\":\"Density-functional theory for plutonium\",\"authors\":\"P. Söderlind, A. Landa, B. Sadigh\",\"doi\":\"10.1080/00018732.2019.1599554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review developments in the theoretical description and understanding of plutonium in terms of a metal with itinerant (band) 5f electrons. Within this picture most facets of this remarkable and anomalous material are accurately described by first-principle, parameter-free, density-functional-theory (DFT) calculations. We show that the model explains plutonium’s phase stability, elasticity, lattice vibrations, electronic structure, alloy properties, and magnetism. Fluctuations are addressed by means of constrained DFT calculations and new light is shed on the anomalous properties of δ plutonium, including explaining its negative thermal expansion. Effects of alloying and point defects in plutonium are also addressed. It is further emphasized that strong electron correlations, originating from a large intra-atomic Coulomb repulsion (∼4 eV) of the 5f electrons, that has often been assumed for plutonium in the literature, is inconsistent with the experimental phase diagram of plutonium.\",\"PeriodicalId\":7373,\"journal\":{\"name\":\"Advances in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":35.0000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00018732.2019.1599554\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/00018732.2019.1599554\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2019.1599554","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
We review developments in the theoretical description and understanding of plutonium in terms of a metal with itinerant (band) 5f electrons. Within this picture most facets of this remarkable and anomalous material are accurately described by first-principle, parameter-free, density-functional-theory (DFT) calculations. We show that the model explains plutonium’s phase stability, elasticity, lattice vibrations, electronic structure, alloy properties, and magnetism. Fluctuations are addressed by means of constrained DFT calculations and new light is shed on the anomalous properties of δ plutonium, including explaining its negative thermal expansion. Effects of alloying and point defects in plutonium are also addressed. It is further emphasized that strong electron correlations, originating from a large intra-atomic Coulomb repulsion (∼4 eV) of the 5f electrons, that has often been assumed for plutonium in the literature, is inconsistent with the experimental phase diagram of plutonium.
期刊介绍:
Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.