{"title":"卤化物方钠石:热膨胀、分解和Lindemann准则","authors":"Marius Wolpmann, L. Robben, T. Gesing","doi":"10.1515/zkri-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract Twelve cubic sodalites |Na8X2|[T1T2O4]6 (T1 = Al3+, Ga3+; T2 = Si4+, Ge4+; X = Cl−, Br−, I−) were examined using high-temperature (HT) X-ray diffraction experiments and TGA-DSC measurements. Temperature-dependent structure data was obtained by Rietveld refinements. Decomposition temperatures were determined using TGA-DSC data for all compounds. The temperature-dependent volume expansion was used to determine Debye and Einstein temperatures using DEA fits. Distinct relations between thermal expansion, bond lengths and the decomposition temperature could not be found. Determination of Lindemann constants of all compounds enables a classification of the sodalites in three groups.","PeriodicalId":48676,"journal":{"name":"Zeitschrift Fur Kristallographie-Crystalline Materials","volume":"237 1","pages":"39 - 50"},"PeriodicalIF":0.9000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion\",\"authors\":\"Marius Wolpmann, L. Robben, T. Gesing\",\"doi\":\"10.1515/zkri-2022-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Twelve cubic sodalites |Na8X2|[T1T2O4]6 (T1 = Al3+, Ga3+; T2 = Si4+, Ge4+; X = Cl−, Br−, I−) were examined using high-temperature (HT) X-ray diffraction experiments and TGA-DSC measurements. Temperature-dependent structure data was obtained by Rietveld refinements. Decomposition temperatures were determined using TGA-DSC data for all compounds. The temperature-dependent volume expansion was used to determine Debye and Einstein temperatures using DEA fits. Distinct relations between thermal expansion, bond lengths and the decomposition temperature could not be found. Determination of Lindemann constants of all compounds enables a classification of the sodalites in three groups.\",\"PeriodicalId\":48676,\"journal\":{\"name\":\"Zeitschrift Fur Kristallographie-Crystalline Materials\",\"volume\":\"237 1\",\"pages\":\"39 - 50\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Kristallographie-Crystalline Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/zkri-2022-0004\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Kristallographie-Crystalline Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/zkri-2022-0004","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
Abstract Twelve cubic sodalites |Na8X2|[T1T2O4]6 (T1 = Al3+, Ga3+; T2 = Si4+, Ge4+; X = Cl−, Br−, I−) were examined using high-temperature (HT) X-ray diffraction experiments and TGA-DSC measurements. Temperature-dependent structure data was obtained by Rietveld refinements. Decomposition temperatures were determined using TGA-DSC data for all compounds. The temperature-dependent volume expansion was used to determine Debye and Einstein temperatures using DEA fits. Distinct relations between thermal expansion, bond lengths and the decomposition temperature could not be found. Determination of Lindemann constants of all compounds enables a classification of the sodalites in three groups.
期刊介绍:
Zeitschrift für Kristallographie – Crystalline Materials was founded in 1877 by Paul von Groth and is today one of the world’s oldest scientific journals. It offers a place for researchers to present results of their theoretical experimental crystallographic studies. The journal presents significant results on structures and on properties of organic/inorganic substances with crystalline character, periodically ordered, modulated or quasicrystalline on static and dynamic phenomena applying the various methods of diffraction, spectroscopy and microscopy.