描述振动的非线性模型的流氓、多波、同斜呼吸、m形有理解和周期扭结解

IF 4.4 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Syed T.R. Rizvi , Aly R. Seadawy , M. Aamir Ashraf , Muhammad Younis , Abdul Khaliq , Dumitru Baleanu
{"title":"描述振动的非线性模型的流氓、多波、同斜呼吸、m形有理解和周期扭结解","authors":"Syed T.R. Rizvi ,&nbsp;Aly R. Seadawy ,&nbsp;M. Aamir Ashraf ,&nbsp;Muhammad Younis ,&nbsp;Abdul Khaliq ,&nbsp;Dumitru Baleanu","doi":"10.1016/j.rinp.2021.104654","DOIUrl":null,"url":null,"abstract":"<div><p>Our aim in this paper is to determine rogue-wave solutions for Maccari-system. We also construct multi-waves, homoclinic breathers, M-shaped rational and periodic cross kink solutions with the combination of exponential, rational, trigonometric functions and various bilinear forms. We will also draw graphical structures of our newly attained results and explain their physique.</p></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"29 ","pages":"Article 104654"},"PeriodicalIF":4.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rinp.2021.104654","citationCount":"11","resultStr":"{\"title\":\"Rogue, multi-wave, homoclinic breather, M-shaped rational and periodic-kink solutions for a nonlinear model describing vibrations\",\"authors\":\"Syed T.R. Rizvi ,&nbsp;Aly R. Seadawy ,&nbsp;M. Aamir Ashraf ,&nbsp;Muhammad Younis ,&nbsp;Abdul Khaliq ,&nbsp;Dumitru Baleanu\",\"doi\":\"10.1016/j.rinp.2021.104654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our aim in this paper is to determine rogue-wave solutions for Maccari-system. We also construct multi-waves, homoclinic breathers, M-shaped rational and periodic cross kink solutions with the combination of exponential, rational, trigonometric functions and various bilinear forms. We will also draw graphical structures of our newly attained results and explain their physique.</p></div>\",\"PeriodicalId\":21042,\"journal\":{\"name\":\"Results in Physics\",\"volume\":\"29 \",\"pages\":\"Article 104654\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.rinp.2021.104654\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211379721007439\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379721007439","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

本文的目的是确定马卡里系统的流氓波解。我们还利用指数函数、有理函数、三角函数和各种双线性形式的组合构造了多波解、同斜呼吸解、m形有理解和周期交结解。我们还将绘制我们新获得的结果的图形结构,并解释他们的体格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rogue, multi-wave, homoclinic breather, M-shaped rational and periodic-kink solutions for a nonlinear model describing vibrations

Our aim in this paper is to determine rogue-wave solutions for Maccari-system. We also construct multi-waves, homoclinic breathers, M-shaped rational and periodic cross kink solutions with the combination of exponential, rational, trigonometric functions and various bilinear forms. We will also draw graphical structures of our newly attained results and explain their physique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信