{"title":"中国陆相和海相页岩有机质取向特征的实验研究","authors":"Dunqing Liu, Hongkui Ge, Yinhao Shen, Kui Zhang","doi":"10.1155/2021/8895350","DOIUrl":null,"url":null,"abstract":"<div>\n <p>As an essential component in shale, OM (organic matter) grains and their arrangements may play essential roles in affecting the anisotropy of the reservoir. However, OM grains are commonly treated as an evenly distributed isotropic medium in current studies, and few works have been done to investigate their detailed arrangement characteristics. In this study, terrestrial and marine shale samples were collected from three different shale plays in China, and the arrangement characteristics of OM grains in each sample were investigated by SEM (scanning electron microscope) image analysis. The results indicate that OM grains in shale are not evenly distributed in isotropic medium, and their directional alignment is pervasive in both marine and terrestrial shale. OM grains in shale tend to subparallel to the bedding section, and their orientation degree and controlling factors differ among different shales. OM grains in samples from terrestrial C-7(Chang-7 Formation) exhibit the strongest directionality in their arrangement, and OM grains in samples from marine LMX (Longmaxi Formation) shale in the Fuling area also exhibit strong directional alignment. While in samples from marine LMX shale in the Baojing area, their directional alignment is much weaker. Shales with high clay content, high TOC (total organic carbon), low thermal maturity, and flat reservoir structure get more OM grains parallel to the bedding section. The biogenetic texture of graptolite in marine LMX shale is the dominating factor leading to the strong directional alignment of the OM grains. However, syncline structure may disorganize the preformed directional alignment and weaken the directionality of the OM grains, which results in the OM arrangement difference between LMX samples from Fuling and Baojing. While the compaction of the layered clay particles is the dominating mechanism leading to the strong directional alignment of the OM grains in terrestrial shale samples from C-7.</p>\n </div>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2021 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2021/8895350","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation on Organic Matter Orientation Characteristics of Terrestrial and Marine Shale in China\",\"authors\":\"Dunqing Liu, Hongkui Ge, Yinhao Shen, Kui Zhang\",\"doi\":\"10.1155/2021/8895350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>As an essential component in shale, OM (organic matter) grains and their arrangements may play essential roles in affecting the anisotropy of the reservoir. However, OM grains are commonly treated as an evenly distributed isotropic medium in current studies, and few works have been done to investigate their detailed arrangement characteristics. In this study, terrestrial and marine shale samples were collected from three different shale plays in China, and the arrangement characteristics of OM grains in each sample were investigated by SEM (scanning electron microscope) image analysis. The results indicate that OM grains in shale are not evenly distributed in isotropic medium, and their directional alignment is pervasive in both marine and terrestrial shale. OM grains in shale tend to subparallel to the bedding section, and their orientation degree and controlling factors differ among different shales. OM grains in samples from terrestrial C-7(Chang-7 Formation) exhibit the strongest directionality in their arrangement, and OM grains in samples from marine LMX (Longmaxi Formation) shale in the Fuling area also exhibit strong directional alignment. While in samples from marine LMX shale in the Baojing area, their directional alignment is much weaker. Shales with high clay content, high TOC (total organic carbon), low thermal maturity, and flat reservoir structure get more OM grains parallel to the bedding section. The biogenetic texture of graptolite in marine LMX shale is the dominating factor leading to the strong directional alignment of the OM grains. However, syncline structure may disorganize the preformed directional alignment and weaken the directionality of the OM grains, which results in the OM arrangement difference between LMX samples from Fuling and Baojing. While the compaction of the layered clay particles is the dominating mechanism leading to the strong directional alignment of the OM grains in terrestrial shale samples from C-7.</p>\\n </div>\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":\"2021 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2021/8895350\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2021/8895350\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2021/8895350","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Experimental Investigation on Organic Matter Orientation Characteristics of Terrestrial and Marine Shale in China
As an essential component in shale, OM (organic matter) grains and their arrangements may play essential roles in affecting the anisotropy of the reservoir. However, OM grains are commonly treated as an evenly distributed isotropic medium in current studies, and few works have been done to investigate their detailed arrangement characteristics. In this study, terrestrial and marine shale samples were collected from three different shale plays in China, and the arrangement characteristics of OM grains in each sample were investigated by SEM (scanning electron microscope) image analysis. The results indicate that OM grains in shale are not evenly distributed in isotropic medium, and their directional alignment is pervasive in both marine and terrestrial shale. OM grains in shale tend to subparallel to the bedding section, and their orientation degree and controlling factors differ among different shales. OM grains in samples from terrestrial C-7(Chang-7 Formation) exhibit the strongest directionality in their arrangement, and OM grains in samples from marine LMX (Longmaxi Formation) shale in the Fuling area also exhibit strong directional alignment. While in samples from marine LMX shale in the Baojing area, their directional alignment is much weaker. Shales with high clay content, high TOC (total organic carbon), low thermal maturity, and flat reservoir structure get more OM grains parallel to the bedding section. The biogenetic texture of graptolite in marine LMX shale is the dominating factor leading to the strong directional alignment of the OM grains. However, syncline structure may disorganize the preformed directional alignment and weaken the directionality of the OM grains, which results in the OM arrangement difference between LMX samples from Fuling and Baojing. While the compaction of the layered clay particles is the dominating mechanism leading to the strong directional alignment of the OM grains in terrestrial shale samples from C-7.
期刊介绍:
Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines.
Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.