{"title":"断棒先验的泛函中心极限定理","authors":"Yaozhong Hu, Junxi Zhang","doi":"10.1214/21-ba1290","DOIUrl":null,"url":null,"abstract":"We obtain the empirical strong law of large numbers, empirical Glivenko-Cantelli theorem, central limit theorem, functional central limit theorem for various nonparametric Bayesian priors which include the Dirichlet process with general stick-breaking weights, the Poisson-Dirichlet process, the normalized inverse Gaussian process, the normalized generalized gamma process, and the generalized Dirichlet process. For the Dirichlet process with general stick-breaking weights, we introduce two general conditions such that the central limit theorem and functional central limit theorem hold. Except in the case of the generalized Dirichlet process, since the finite dimensional distributions of these processes are either hard to obtain or are complicated to use even they are available, we use the method of moments to obtain the convergence results. For the generalized Dirichlet process we use its finite dimensional marginal distributions to obtain the asymptotics although the computations are highly technical.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functional Central Limit Theorems for Stick-Breaking Priors\",\"authors\":\"Yaozhong Hu, Junxi Zhang\",\"doi\":\"10.1214/21-ba1290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the empirical strong law of large numbers, empirical Glivenko-Cantelli theorem, central limit theorem, functional central limit theorem for various nonparametric Bayesian priors which include the Dirichlet process with general stick-breaking weights, the Poisson-Dirichlet process, the normalized inverse Gaussian process, the normalized generalized gamma process, and the generalized Dirichlet process. For the Dirichlet process with general stick-breaking weights, we introduce two general conditions such that the central limit theorem and functional central limit theorem hold. Except in the case of the generalized Dirichlet process, since the finite dimensional distributions of these processes are either hard to obtain or are complicated to use even they are available, we use the method of moments to obtain the convergence results. For the generalized Dirichlet process we use its finite dimensional marginal distributions to obtain the asymptotics although the computations are highly technical.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ba1290\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ba1290","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Functional Central Limit Theorems for Stick-Breaking Priors
We obtain the empirical strong law of large numbers, empirical Glivenko-Cantelli theorem, central limit theorem, functional central limit theorem for various nonparametric Bayesian priors which include the Dirichlet process with general stick-breaking weights, the Poisson-Dirichlet process, the normalized inverse Gaussian process, the normalized generalized gamma process, and the generalized Dirichlet process. For the Dirichlet process with general stick-breaking weights, we introduce two general conditions such that the central limit theorem and functional central limit theorem hold. Except in the case of the generalized Dirichlet process, since the finite dimensional distributions of these processes are either hard to obtain or are complicated to use even they are available, we use the method of moments to obtain the convergence results. For the generalized Dirichlet process we use its finite dimensional marginal distributions to obtain the asymptotics although the computations are highly technical.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.