断棒先验的泛函中心极限定理

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yaozhong Hu, Junxi Zhang
{"title":"断棒先验的泛函中心极限定理","authors":"Yaozhong Hu, Junxi Zhang","doi":"10.1214/21-ba1290","DOIUrl":null,"url":null,"abstract":"We obtain the empirical strong law of large numbers, empirical Glivenko-Cantelli theorem, central limit theorem, functional central limit theorem for various nonparametric Bayesian priors which include the Dirichlet process with general stick-breaking weights, the Poisson-Dirichlet process, the normalized inverse Gaussian process, the normalized generalized gamma process, and the generalized Dirichlet process. For the Dirichlet process with general stick-breaking weights, we introduce two general conditions such that the central limit theorem and functional central limit theorem hold. Except in the case of the generalized Dirichlet process, since the finite dimensional distributions of these processes are either hard to obtain or are complicated to use even they are available, we use the method of moments to obtain the convergence results. For the generalized Dirichlet process we use its finite dimensional marginal distributions to obtain the asymptotics although the computations are highly technical.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functional Central Limit Theorems for Stick-Breaking Priors\",\"authors\":\"Yaozhong Hu, Junxi Zhang\",\"doi\":\"10.1214/21-ba1290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the empirical strong law of large numbers, empirical Glivenko-Cantelli theorem, central limit theorem, functional central limit theorem for various nonparametric Bayesian priors which include the Dirichlet process with general stick-breaking weights, the Poisson-Dirichlet process, the normalized inverse Gaussian process, the normalized generalized gamma process, and the generalized Dirichlet process. For the Dirichlet process with general stick-breaking weights, we introduce two general conditions such that the central limit theorem and functional central limit theorem hold. Except in the case of the generalized Dirichlet process, since the finite dimensional distributions of these processes are either hard to obtain or are complicated to use even they are available, we use the method of moments to obtain the convergence results. For the generalized Dirichlet process we use its finite dimensional marginal distributions to obtain the asymptotics although the computations are highly technical.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ba1290\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ba1290","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

我们得到了各种非参数贝叶斯先验的经验强数定律、经验Glivenko-Cantelli定理、中心极限定理、泛函中心极限定理,这些先验包括具有一般断棒权的Dirichlet过程、泊松-Dirichlet过程、归一化逆高斯过程、归一化广义伽马过程和广义Dirichlet过程。对于具有一般断棒权的Dirichlet过程,我们引入了中心极限定理和泛函中心极限定理成立的两个一般条件。除广义Dirichlet过程外,由于这些过程的有限维分布难以获得或即使有也难以使用,因此我们使用矩量法来获得收敛结果。对于广义狄利克雷过程,我们使用它的有限维边际分布来获得渐近性,尽管计算是非常技术性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Central Limit Theorems for Stick-Breaking Priors
We obtain the empirical strong law of large numbers, empirical Glivenko-Cantelli theorem, central limit theorem, functional central limit theorem for various nonparametric Bayesian priors which include the Dirichlet process with general stick-breaking weights, the Poisson-Dirichlet process, the normalized inverse Gaussian process, the normalized generalized gamma process, and the generalized Dirichlet process. For the Dirichlet process with general stick-breaking weights, we introduce two general conditions such that the central limit theorem and functional central limit theorem hold. Except in the case of the generalized Dirichlet process, since the finite dimensional distributions of these processes are either hard to obtain or are complicated to use even they are available, we use the method of moments to obtain the convergence results. For the generalized Dirichlet process we use its finite dimensional marginal distributions to obtain the asymptotics although the computations are highly technical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信