{"title":"基于卷积神经网络的物体图像抓取方法回顾","authors":"M. Sanada, T. Matsuo, N. Shimada, Y. Shirai","doi":"10.21203/rs.3.rs-51700/v1","DOIUrl":null,"url":null,"abstract":"In this study, a method for a robot to recall multiple grasping methods for a given object is proposed. The aim of this study was for robots to learn grasping methods for new objects by observing the grasping activities of humans in daily life without special instructions. For this setting, only one grasping motion was observed for an object at a time, and it was never known whether other grasping methods were possible for the object, although supervised learning generally requires all possible answers for each training input. The proposed method gives a solution for that learning situations by employing a convolutional neural network with automatic clustering of the observed grasping method. In the proposed method, the grasping methods are clustered during the process of learning of the grasping position. The method first recalls grasping positions and the network estimates the multi-channel heatmap such that each channel heatmap indicates one grasping position, then checks the graspability for each estimated position. Finally, the method recalls the hand shapes based on the estimated grasping position and the object’s shape. This paper describes the results of recalling multiple grasping methods and demonstrates the effectiveness of the proposed method.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":"8 1","pages":"1-13"},"PeriodicalIF":1.5000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recalling of multiple grasping methods from an object image with a convolutional neural network\",\"authors\":\"M. Sanada, T. Matsuo, N. Shimada, Y. Shirai\",\"doi\":\"10.21203/rs.3.rs-51700/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a method for a robot to recall multiple grasping methods for a given object is proposed. The aim of this study was for robots to learn grasping methods for new objects by observing the grasping activities of humans in daily life without special instructions. For this setting, only one grasping motion was observed for an object at a time, and it was never known whether other grasping methods were possible for the object, although supervised learning generally requires all possible answers for each training input. The proposed method gives a solution for that learning situations by employing a convolutional neural network with automatic clustering of the observed grasping method. In the proposed method, the grasping methods are clustered during the process of learning of the grasping position. The method first recalls grasping positions and the network estimates the multi-channel heatmap such that each channel heatmap indicates one grasping position, then checks the graspability for each estimated position. Finally, the method recalls the hand shapes based on the estimated grasping position and the object’s shape. This paper describes the results of recalling multiple grasping methods and demonstrates the effectiveness of the proposed method.\",\"PeriodicalId\":37462,\"journal\":{\"name\":\"ROBOMECH Journal\",\"volume\":\"8 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ROBOMECH Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-51700/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-51700/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Recalling of multiple grasping methods from an object image with a convolutional neural network
In this study, a method for a robot to recall multiple grasping methods for a given object is proposed. The aim of this study was for robots to learn grasping methods for new objects by observing the grasping activities of humans in daily life without special instructions. For this setting, only one grasping motion was observed for an object at a time, and it was never known whether other grasping methods were possible for the object, although supervised learning generally requires all possible answers for each training input. The proposed method gives a solution for that learning situations by employing a convolutional neural network with automatic clustering of the observed grasping method. In the proposed method, the grasping methods are clustered during the process of learning of the grasping position. The method first recalls grasping positions and the network estimates the multi-channel heatmap such that each channel heatmap indicates one grasping position, then checks the graspability for each estimated position. Finally, the method recalls the hand shapes based on the estimated grasping position and the object’s shape. This paper describes the results of recalling multiple grasping methods and demonstrates the effectiveness of the proposed method.
期刊介绍:
ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications