基于公交智能卡和家庭访谈调查数据的神经网络建模手机轨迹出行模式

IF 2.1 4区 工程技术 Q3 TRANSPORTATION
J. Vaughan, Ahmadreza Faghih Imani, B. Yusuf, E. Miller
{"title":"基于公交智能卡和家庭访谈调查数据的神经网络建模手机轨迹出行模式","authors":"J. Vaughan, Ahmadreza Faghih Imani, B. Yusuf, E. Miller","doi":"10.18757/EJTIR.2020.20.4.5429","DOIUrl":null,"url":null,"abstract":"This study proposes a framework to impute travel mode for trips identified from cellphone traces by developing a deep neural network model. In our framework, we use the trips from a home interview survey and transit smartcard data, for which the travel mode is known, to create a set of artificial pseudo-cellphone traces. The generated artificial pseudo-cellphone traces with known mode are then used to train a deep neural network classifier. We further apply the trained model to infer travel modes for the cellphone traces from cellular network data. The empirical case study region is Montevideo, Uruguay, where high-quality data are available for all three types of data used in the analysis: a large dataset of cellphone traces, a large dataset of public transit smartcard transactions, and a small household travel survey. The results can be used to create an enhanced representation of origin-destination trip-making in the region by time of day and travel mode.","PeriodicalId":46721,"journal":{"name":"European Journal of Transport and Infrastructure Research","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modelling cellphone trace travel mode with neural networks using transit smartcard and home interview survey data\",\"authors\":\"J. Vaughan, Ahmadreza Faghih Imani, B. Yusuf, E. Miller\",\"doi\":\"10.18757/EJTIR.2020.20.4.5429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a framework to impute travel mode for trips identified from cellphone traces by developing a deep neural network model. In our framework, we use the trips from a home interview survey and transit smartcard data, for which the travel mode is known, to create a set of artificial pseudo-cellphone traces. The generated artificial pseudo-cellphone traces with known mode are then used to train a deep neural network classifier. We further apply the trained model to infer travel modes for the cellphone traces from cellular network data. The empirical case study region is Montevideo, Uruguay, where high-quality data are available for all three types of data used in the analysis: a large dataset of cellphone traces, a large dataset of public transit smartcard transactions, and a small household travel survey. The results can be used to create an enhanced representation of origin-destination trip-making in the region by time of day and travel mode.\",\"PeriodicalId\":46721,\"journal\":{\"name\":\"European Journal of Transport and Infrastructure Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Transport and Infrastructure Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18757/EJTIR.2020.20.4.5429\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Transport and Infrastructure Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18757/EJTIR.2020.20.4.5429","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 4

摘要

本研究提出了一个框架,通过开发深度神经网络模型,对从手机轨迹中识别的行程进行推断。在我们的框架中,我们使用来自家庭访谈调查和交通智能卡数据的旅行,其中旅行模式是已知的,来创建一组人造的伪手机痕迹。然后利用生成的具有已知模式的人工伪手机轨迹来训练深度神经网络分类器。我们进一步应用训练好的模型从蜂窝网络数据推断手机轨迹的旅行模式。实证案例研究地区是乌拉圭的蒙得维的亚,在那里,高质量的数据可用于分析中使用的所有三种类型的数据:手机痕迹的大型数据集,公共交通智能卡交易的大型数据集,以及小型家庭旅行调查。这些结果可以用来创建一个增强的代表在一天中的时间和旅行模式的始发目的地旅行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling cellphone trace travel mode with neural networks using transit smartcard and home interview survey data
This study proposes a framework to impute travel mode for trips identified from cellphone traces by developing a deep neural network model. In our framework, we use the trips from a home interview survey and transit smartcard data, for which the travel mode is known, to create a set of artificial pseudo-cellphone traces. The generated artificial pseudo-cellphone traces with known mode are then used to train a deep neural network classifier. We further apply the trained model to infer travel modes for the cellphone traces from cellular network data. The empirical case study region is Montevideo, Uruguay, where high-quality data are available for all three types of data used in the analysis: a large dataset of cellphone traces, a large dataset of public transit smartcard transactions, and a small household travel survey. The results can be used to create an enhanced representation of origin-destination trip-making in the region by time of day and travel mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
30 weeks
期刊介绍: The European Journal of Transport and Infrastructure Research (EJTIR) is a peer-reviewed scholarly journal, freely accessible through the internet. EJTIR aims to present the results of high-quality scientific research to a readership of academics, practitioners and policy-makers. It is our ambition to be the journal of choice in the field of transport and infrastructure both for readers and authors. To achieve this ambition, EJTIR distinguishes itself from other journals in its field, both through its scope and the way it is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信