一个改进的Christoffel函数及其渐近性质

IF 0.9 3区 数学 Q2 MATHEMATICS
Jean B. Lasserre
{"title":"一个改进的Christoffel函数及其渐近性质","authors":"Jean B. Lasserre","doi":"10.1016/j.jat.2023.105955","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a certain variant (or regularization) <span><math><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span> of the standard Christoffel function <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span> associated with a measure <span><math><mi>μ</mi></math></span> on a compact set <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>. Its reciprocal is now a sum-of-squares polynomial in the variables <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></math></span>, <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. It shares the same dichotomy property of the standard Christoffel function, that is, the growth with <span><math><mi>n</mi></math></span> of its inverse is at most polynomial inside and exponential outside the support of the measure. Its distinguishing and crucial feature states that for fixed <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span><span>, and under weak assumptions, </span><span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>f</mi></math></span> (assumed to be continuous) is the unknown density of <span><math><mi>μ</mi></math></span><span> w.r.t. Lebesgue measure on </span><span><math><mi>Ω</mi></math></span>, and <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span> (and so <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow><mo>≈</mo><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is small). This is in contrast with the standard Christoffel function where if <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msup><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> exists, it is of the form <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>E</mi></mrow></msub><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span><span> is the density of the equilibrium measure of </span><span><math><mi>Ω</mi></math></span>, usually unknown. At last but not least, the additional computational burden (when compared to computing <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span><span>) is just integrating symbolically the monomial basis </span><span><math><msub><mrow><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>∈</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></mrow></msub></math></span> on the box <span><math><mrow><mo>{</mo><mi>x</mi><mo>:</mo><msub><mrow><mo>‖</mo><mi>x</mi><mo>−</mo><mi>ξ</mi><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow></msub><mo>&lt;</mo><mi>ɛ</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></math></span>, so that <span><math><mrow><mn>1</mn><mo>/</mo><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></mrow></math></span> is obtained as an explicit polynomial of <span><math><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified Christoffel function and its asymptotic properties\",\"authors\":\"Jean B. Lasserre\",\"doi\":\"10.1016/j.jat.2023.105955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a certain variant (or regularization) <span><math><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span> of the standard Christoffel function <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span> associated with a measure <span><math><mi>μ</mi></math></span> on a compact set <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>. Its reciprocal is now a sum-of-squares polynomial in the variables <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></math></span>, <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. It shares the same dichotomy property of the standard Christoffel function, that is, the growth with <span><math><mi>n</mi></math></span> of its inverse is at most polynomial inside and exponential outside the support of the measure. Its distinguishing and crucial feature states that for fixed <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span><span>, and under weak assumptions, </span><span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>f</mi></math></span> (assumed to be continuous) is the unknown density of <span><math><mi>μ</mi></math></span><span> w.r.t. Lebesgue measure on </span><span><math><mi>Ω</mi></math></span>, and <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span> (and so <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow><mo>≈</mo><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is small). This is in contrast with the standard Christoffel function where if <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msup><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> exists, it is of the form <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>E</mi></mrow></msub><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span><span> is the density of the equilibrium measure of </span><span><math><mi>Ω</mi></math></span>, usually unknown. At last but not least, the additional computational burden (when compared to computing <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span><span>) is just integrating symbolically the monomial basis </span><span><math><msub><mrow><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>∈</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></mrow></msub></math></span> on the box <span><math><mrow><mo>{</mo><mi>x</mi><mo>:</mo><msub><mrow><mo>‖</mo><mi>x</mi><mo>−</mo><mi>ξ</mi><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow></msub><mo>&lt;</mo><mi>ɛ</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></math></span>, so that <span><math><mrow><mn>1</mn><mo>/</mo><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></mrow></math></span> is obtained as an explicit polynomial of <span><math><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002190452300093X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002190452300093X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了与紧集Ω⊂Rd上的测度μ相关的标准Christoffel函数∧nμ的某种变体(或正则化)∧。它的倒数现在是变量(x;0。它与标准Christoffel函数具有相同的二分法性质,即其逆函数的n的增长在测度的支持范围内最多是多项式,在测度的支撑范围外最多是指数。它的显著性和关键性特征表明;0,并且在弱假设下,limn→∞μ(ξ,ξ)=f(ζ),其中f(假定为连续的)是μw.r.t.Lebesgue测度在Ω上的未知密度,ζ∈B∞(ξ;0很小)。这与标准的Christoffel函数形成对比,其中如果limn→∞nd∧nμ(ξ)存在,其形式为f(ξ。最后但并非最不重要的是,额外的计算负担(当与计算∧nμ相比时)只是象征性地积分盒子{x:‖x-ξ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified Christoffel function and its asymptotic properties

We introduce a certain variant (or regularization) Λ̃nμ of the standard Christoffel function Λnμ associated with a measure μ on a compact set ΩRd. Its reciprocal is now a sum-of-squares polynomial in the variables (x,ɛ), ɛ>0. It shares the same dichotomy property of the standard Christoffel function, that is, the growth with n of its inverse is at most polynomial inside and exponential outside the support of the measure. Its distinguishing and crucial feature states that for fixed ɛ>0, and under weak assumptions, limnɛdΛ̃nμ(ξ,ɛ)=f(ζɛ) where f (assumed to be continuous) is the unknown density of μ w.r.t. Lebesgue measure on Ω, and ζɛB(ξ,ɛ) (and so f(ζɛ)f(ξ) when ɛ>0 is small). This is in contrast with the standard Christoffel function where if limnndΛnμ(ξ) exists, it is of the form f(ξ)/ωE(ξ) where ωE is the density of the equilibrium measure of Ω, usually unknown. At last but not least, the additional computational burden (when compared to computing Λnμ) is just integrating symbolically the monomial basis (xα)αNnd on the box {x:xξ<ɛ/2}, so that 1/Λ̃nμ is obtained as an explicit polynomial of (ξ,ɛ).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信