{"title":"一个改进的Christoffel函数及其渐近性质","authors":"Jean B. Lasserre","doi":"10.1016/j.jat.2023.105955","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a certain variant (or regularization) <span><math><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span> of the standard Christoffel function <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span> associated with a measure <span><math><mi>μ</mi></math></span> on a compact set <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>. Its reciprocal is now a sum-of-squares polynomial in the variables <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></math></span>, <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span>. It shares the same dichotomy property of the standard Christoffel function, that is, the growth with <span><math><mi>n</mi></math></span> of its inverse is at most polynomial inside and exponential outside the support of the measure. Its distinguishing and crucial feature states that for fixed <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span><span>, and under weak assumptions, </span><span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>f</mi></math></span> (assumed to be continuous) is the unknown density of <span><math><mi>μ</mi></math></span><span> w.r.t. Lebesgue measure on </span><span><math><mi>Ω</mi></math></span>, and <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span> (and so <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow><mo>≈</mo><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> is small). This is in contrast with the standard Christoffel function where if <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msup><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> exists, it is of the form <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>E</mi></mrow></msub><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span><span> is the density of the equilibrium measure of </span><span><math><mi>Ω</mi></math></span>, usually unknown. At last but not least, the additional computational burden (when compared to computing <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span><span>) is just integrating symbolically the monomial basis </span><span><math><msub><mrow><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>∈</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></mrow></msub></math></span> on the box <span><math><mrow><mo>{</mo><mi>x</mi><mo>:</mo><msub><mrow><mo>‖</mo><mi>x</mi><mo>−</mo><mi>ξ</mi><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow></msub><mo><</mo><mi>ɛ</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></math></span>, so that <span><math><mrow><mn>1</mn><mo>/</mo><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></mrow></math></span> is obtained as an explicit polynomial of <span><math><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified Christoffel function and its asymptotic properties\",\"authors\":\"Jean B. Lasserre\",\"doi\":\"10.1016/j.jat.2023.105955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a certain variant (or regularization) <span><math><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span> of the standard Christoffel function <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span> associated with a measure <span><math><mi>μ</mi></math></span> on a compact set <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>. Its reciprocal is now a sum-of-squares polynomial in the variables <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></math></span>, <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span>. It shares the same dichotomy property of the standard Christoffel function, that is, the growth with <span><math><mi>n</mi></math></span> of its inverse is at most polynomial inside and exponential outside the support of the measure. Its distinguishing and crucial feature states that for fixed <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span><span>, and under weak assumptions, </span><span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>f</mi></math></span> (assumed to be continuous) is the unknown density of <span><math><mi>μ</mi></math></span><span> w.r.t. Lebesgue measure on </span><span><math><mi>Ω</mi></math></span>, and <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span> (and so <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow><mo>≈</mo><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> is small). This is in contrast with the standard Christoffel function where if <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msup><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> exists, it is of the form <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>E</mi></mrow></msub><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span><span> is the density of the equilibrium measure of </span><span><math><mi>Ω</mi></math></span>, usually unknown. At last but not least, the additional computational burden (when compared to computing <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></math></span><span>) is just integrating symbolically the monomial basis </span><span><math><msub><mrow><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>∈</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></mrow></msub></math></span> on the box <span><math><mrow><mo>{</mo><mi>x</mi><mo>:</mo><msub><mrow><mo>‖</mo><mi>x</mi><mo>−</mo><mi>ξ</mi><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow></msub><mo><</mo><mi>ɛ</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></math></span>, so that <span><math><mrow><mn>1</mn><mo>/</mo><msubsup><mrow><mover><mrow><mi>Λ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow><mrow><mi>μ</mi></mrow></msubsup></mrow></math></span> is obtained as an explicit polynomial of <span><math><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>ɛ</mi><mo>)</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002190452300093X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002190452300093X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A modified Christoffel function and its asymptotic properties
We introduce a certain variant (or regularization) of the standard Christoffel function associated with a measure on a compact set . Its reciprocal is now a sum-of-squares polynomial in the variables , . It shares the same dichotomy property of the standard Christoffel function, that is, the growth with of its inverse is at most polynomial inside and exponential outside the support of the measure. Its distinguishing and crucial feature states that for fixed , and under weak assumptions, where (assumed to be continuous) is the unknown density of w.r.t. Lebesgue measure on , and (and so when is small). This is in contrast with the standard Christoffel function where if exists, it is of the form where is the density of the equilibrium measure of , usually unknown. At last but not least, the additional computational burden (when compared to computing ) is just integrating symbolically the monomial basis on the box , so that is obtained as an explicit polynomial of .
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.