{"title":"一种模拟钢柱高温蠕变屈曲行为的方法","authors":"Linbo Zhang, Lei Xu, Weiyong Wang","doi":"10.1007/s10694-023-01385-9","DOIUrl":null,"url":null,"abstract":"<div><p>When subjected to a constant applied load and elevated temperature, structural steel columns may buckle after a certain duration due to increasing creep-induced deformation, and such mode of failure is referred to as creep buckling. This paper presents an analytical method to simulate the creep buckling behaviour of steel columns at elevated temperatures by incorporating the Fields-and-Fields creep model and a nonlinear constitutive model of steel at elevated temperatures. Fire and creep buckling tests on Q690 high-strength steel columns are selected to validate the proposed method, and a good agreement between the experimental and analytical results is achieved. This demonstrates that the proposed method can provide an accurate assessment of the lateral deflection of steel columns at elevated temperatures accounting for the creep effect. Time- and strain-hardening formulations are separately incorporated into the analysis. The obtained results indicate that the strain-hardening formulation is more suitable for cases with stress variations. The study also unveils the failure mechanism of creep buckling, which indicates that the creep-induced lateral deflection of an axially loaded steel column at elevated temperatures is initiated by the gradient of stress and strain distributions on the cross-section of the column triggered by the initial imperfection. The parametric study results show that the creep buckling time of the steel column decreases as the load ratio, elevated temperature, and initial imperfection increase; however, the creep buckling time increases as the slenderness ratio increases.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"59 4","pages":"1421 - 1448"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method of Simulating Creep Buckling Behaviour of Steel Columns at Elevated Temperatures\",\"authors\":\"Linbo Zhang, Lei Xu, Weiyong Wang\",\"doi\":\"10.1007/s10694-023-01385-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When subjected to a constant applied load and elevated temperature, structural steel columns may buckle after a certain duration due to increasing creep-induced deformation, and such mode of failure is referred to as creep buckling. This paper presents an analytical method to simulate the creep buckling behaviour of steel columns at elevated temperatures by incorporating the Fields-and-Fields creep model and a nonlinear constitutive model of steel at elevated temperatures. Fire and creep buckling tests on Q690 high-strength steel columns are selected to validate the proposed method, and a good agreement between the experimental and analytical results is achieved. This demonstrates that the proposed method can provide an accurate assessment of the lateral deflection of steel columns at elevated temperatures accounting for the creep effect. Time- and strain-hardening formulations are separately incorporated into the analysis. The obtained results indicate that the strain-hardening formulation is more suitable for cases with stress variations. The study also unveils the failure mechanism of creep buckling, which indicates that the creep-induced lateral deflection of an axially loaded steel column at elevated temperatures is initiated by the gradient of stress and strain distributions on the cross-section of the column triggered by the initial imperfection. The parametric study results show that the creep buckling time of the steel column decreases as the load ratio, elevated temperature, and initial imperfection increase; however, the creep buckling time increases as the slenderness ratio increases.</p></div>\",\"PeriodicalId\":558,\"journal\":{\"name\":\"Fire Technology\",\"volume\":\"59 4\",\"pages\":\"1421 - 1448\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10694-023-01385-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-023-01385-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Method of Simulating Creep Buckling Behaviour of Steel Columns at Elevated Temperatures
When subjected to a constant applied load and elevated temperature, structural steel columns may buckle after a certain duration due to increasing creep-induced deformation, and such mode of failure is referred to as creep buckling. This paper presents an analytical method to simulate the creep buckling behaviour of steel columns at elevated temperatures by incorporating the Fields-and-Fields creep model and a nonlinear constitutive model of steel at elevated temperatures. Fire and creep buckling tests on Q690 high-strength steel columns are selected to validate the proposed method, and a good agreement between the experimental and analytical results is achieved. This demonstrates that the proposed method can provide an accurate assessment of the lateral deflection of steel columns at elevated temperatures accounting for the creep effect. Time- and strain-hardening formulations are separately incorporated into the analysis. The obtained results indicate that the strain-hardening formulation is more suitable for cases with stress variations. The study also unveils the failure mechanism of creep buckling, which indicates that the creep-induced lateral deflection of an axially loaded steel column at elevated temperatures is initiated by the gradient of stress and strain distributions on the cross-section of the column triggered by the initial imperfection. The parametric study results show that the creep buckling time of the steel column decreases as the load ratio, elevated temperature, and initial imperfection increase; however, the creep buckling time increases as the slenderness ratio increases.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.