使用因子模型预测爱沙尼亚的通货膨胀率

IF 1.2 3区 经济学 Q3 ECONOMICS
Nicolas Reigl
{"title":"使用因子模型预测爱沙尼亚的通货膨胀率","authors":"Nicolas Reigl","doi":"10.1080/1406099X.2017.1371976","DOIUrl":null,"url":null,"abstract":"ABSTRACT The paper presents forecasts of headline and core inflation in Estonia with factor models in a recursive pseudo out-of-sample framework. The factors are constructed with a principal component analysis and are then incorporated into vector autoregressive (VAR) forecasting models. The analyses show that certain factor-augmented VAR models improve upon a simple univariate autoregressive model but the forecasting gains are small and not systematic. Models with a small number of factors extracted from a large dataset are best suited for forecasting headline inflation. The results also show that models with a larger number of factors extracted from a small dataset outperform the benchmark model in the forecast of Estonian headline and, especially, core inflation.","PeriodicalId":43756,"journal":{"name":"Baltic Journal of Economics","volume":"17 1","pages":"152 - 189"},"PeriodicalIF":1.2000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1406099X.2017.1371976","citationCount":"4","resultStr":"{\"title\":\"Forecasting the Estonian rate of inflation using factor models\",\"authors\":\"Nicolas Reigl\",\"doi\":\"10.1080/1406099X.2017.1371976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The paper presents forecasts of headline and core inflation in Estonia with factor models in a recursive pseudo out-of-sample framework. The factors are constructed with a principal component analysis and are then incorporated into vector autoregressive (VAR) forecasting models. The analyses show that certain factor-augmented VAR models improve upon a simple univariate autoregressive model but the forecasting gains are small and not systematic. Models with a small number of factors extracted from a large dataset are best suited for forecasting headline inflation. The results also show that models with a larger number of factors extracted from a small dataset outperform the benchmark model in the forecast of Estonian headline and, especially, core inflation.\",\"PeriodicalId\":43756,\"journal\":{\"name\":\"Baltic Journal of Economics\",\"volume\":\"17 1\",\"pages\":\"152 - 189\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1406099X.2017.1371976\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baltic Journal of Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/1406099X.2017.1371976\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/1406099X.2017.1371976","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了预测的标题和核心通货膨胀在爱沙尼亚与递归伪样本外框架因子模型。这些因素是用主成分分析构建的,然后纳入向量自回归(VAR)预测模型。分析表明,某些因子增广VAR模型对简单的单变量自回归模型进行了改进,但预测收益较小且不具有系统性。从大型数据集中提取少量因素的模型最适合预测总体通胀。结果还表明,从小型数据集中提取的大量因素的模型在预测爱沙尼亚标题,特别是核心通货膨胀方面优于基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting the Estonian rate of inflation using factor models
ABSTRACT The paper presents forecasts of headline and core inflation in Estonia with factor models in a recursive pseudo out-of-sample framework. The factors are constructed with a principal component analysis and are then incorporated into vector autoregressive (VAR) forecasting models. The analyses show that certain factor-augmented VAR models improve upon a simple univariate autoregressive model but the forecasting gains are small and not systematic. Models with a small number of factors extracted from a large dataset are best suited for forecasting headline inflation. The results also show that models with a larger number of factors extracted from a small dataset outperform the benchmark model in the forecast of Estonian headline and, especially, core inflation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
7
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信