{"title":"纳入人为阈值以提高对海草床累积影响的理解","authors":"G. Murphy, N. Kelly, H. Lotze, M. Wong","doi":"10.1139/facets-2021-0130","DOIUrl":null,"url":null,"abstract":"Cumulative human impact analysis is a promising management tool to estimate the impacts of stressors on ecosystems caused by multiple human activities. However, connecting cumulative impact scores to actual ecosystem change at appropriate spatial scales remains challenging. Here, we calculated cumulative effects (CE) scores for 187 seagrass beds in Atlantic Canada that accounts for both bay-scale and local-scale anthropogenic activities. We then developed a CE threshold to evaluate where degradation of seagrass beds from multiple human activities is more likely. Overall, the CE score was the best predictor of human impacts for seagrass beds. Locations with high watershed land alteration and nitrogen loading had the highest CE scores; however, we also identified seagrass beds with high CE scores in regions characterized by generally low levels of human activities. Forty-nine seagrass beds exceeded the CE threshold and, of these, 86% had CE scores that were influenced by three or more stressors that cumulatively amounted to a large score. This CE threshold approach can provide a simplified metric to identify areas where management of cumulative effects should be prioritized and further highlights the need to consider multiple human activities when assessing anthropogenic impacts to coastal habitats.","PeriodicalId":48511,"journal":{"name":"Facets","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incorporating anthropogenic thresholds to improve understanding of cumulative effects on seagrass beds\",\"authors\":\"G. Murphy, N. Kelly, H. Lotze, M. Wong\",\"doi\":\"10.1139/facets-2021-0130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cumulative human impact analysis is a promising management tool to estimate the impacts of stressors on ecosystems caused by multiple human activities. However, connecting cumulative impact scores to actual ecosystem change at appropriate spatial scales remains challenging. Here, we calculated cumulative effects (CE) scores for 187 seagrass beds in Atlantic Canada that accounts for both bay-scale and local-scale anthropogenic activities. We then developed a CE threshold to evaluate where degradation of seagrass beds from multiple human activities is more likely. Overall, the CE score was the best predictor of human impacts for seagrass beds. Locations with high watershed land alteration and nitrogen loading had the highest CE scores; however, we also identified seagrass beds with high CE scores in regions characterized by generally low levels of human activities. Forty-nine seagrass beds exceeded the CE threshold and, of these, 86% had CE scores that were influenced by three or more stressors that cumulatively amounted to a large score. This CE threshold approach can provide a simplified metric to identify areas where management of cumulative effects should be prioritized and further highlights the need to consider multiple human activities when assessing anthropogenic impacts to coastal habitats.\",\"PeriodicalId\":48511,\"journal\":{\"name\":\"Facets\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facets\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1139/facets-2021-0130\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facets","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1139/facets-2021-0130","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Incorporating anthropogenic thresholds to improve understanding of cumulative effects on seagrass beds
Cumulative human impact analysis is a promising management tool to estimate the impacts of stressors on ecosystems caused by multiple human activities. However, connecting cumulative impact scores to actual ecosystem change at appropriate spatial scales remains challenging. Here, we calculated cumulative effects (CE) scores for 187 seagrass beds in Atlantic Canada that accounts for both bay-scale and local-scale anthropogenic activities. We then developed a CE threshold to evaluate where degradation of seagrass beds from multiple human activities is more likely. Overall, the CE score was the best predictor of human impacts for seagrass beds. Locations with high watershed land alteration and nitrogen loading had the highest CE scores; however, we also identified seagrass beds with high CE scores in regions characterized by generally low levels of human activities. Forty-nine seagrass beds exceeded the CE threshold and, of these, 86% had CE scores that were influenced by three or more stressors that cumulatively amounted to a large score. This CE threshold approach can provide a simplified metric to identify areas where management of cumulative effects should be prioritized and further highlights the need to consider multiple human activities when assessing anthropogenic impacts to coastal habitats.