“关于具有两个温度的偶极体理论的不稳定性”

IF 1.4 4区 数学 Q1 MATHEMATICS
M. Marin, S. Vlase, I. Fudulu, G. Precup
{"title":"“关于具有两个温度的偶极体理论的不稳定性”","authors":"M. Marin, S. Vlase, I. Fudulu, G. Precup","doi":"10.37193/cjm.2022.02.15","DOIUrl":null,"url":null,"abstract":"\"In this paper we approach a generalized thermoelasticity theory based on a heat conduction equation in bodies with dipolar structure, the heat conduction depends on two distinct temperatures, the thermodynamic temperature and the conductive temperature. In our considerations the difference between two temperatures is highlighted by the heat supply. For the mixed initial boundary value problem defined in this context, we prove the uniqueness of a solution corresponding some specific initial and boundary conditions. Also, if the initial energy is negative or null, we prove that the solutions of the mixed problem are exponentially unstable.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"On instability in the theory of dipolar bodies with two-temperatures\\\"\",\"authors\":\"M. Marin, S. Vlase, I. Fudulu, G. Precup\",\"doi\":\"10.37193/cjm.2022.02.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper we approach a generalized thermoelasticity theory based on a heat conduction equation in bodies with dipolar structure, the heat conduction depends on two distinct temperatures, the thermodynamic temperature and the conductive temperature. In our considerations the difference between two temperatures is highlighted by the heat supply. For the mixed initial boundary value problem defined in this context, we prove the uniqueness of a solution corresponding some specific initial and boundary conditions. Also, if the initial energy is negative or null, we prove that the solutions of the mixed problem are exponentially unstable.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.02.15\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.02.15","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

“在本文中,我们基于偶极结构物体中的热传导方程,提出了一种广义热弹性理论,热传导取决于两个不同的温度,即热力学温度和传导温度。在我们的考虑中,两个温度之间的差异突出了供热。对于混合初边值问题在本文中,我们证明了一个对应于特定初始条件和边界条件的解的唯一性。此外,如果初始能量为负或为零,我们证明了混合问题的解是指数不稳定的。“
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"On instability in the theory of dipolar bodies with two-temperatures"
"In this paper we approach a generalized thermoelasticity theory based on a heat conduction equation in bodies with dipolar structure, the heat conduction depends on two distinct temperatures, the thermodynamic temperature and the conductive temperature. In our considerations the difference between two temperatures is highlighted by the heat supply. For the mixed initial boundary value problem defined in this context, we prove the uniqueness of a solution corresponding some specific initial and boundary conditions. Also, if the initial energy is negative or null, we prove that the solutions of the mixed problem are exponentially unstable."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信