用于直接PEGDA微图案制作的疏水表面

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Anna Danielak, Juhee Ko, Aminul Islam, David Bue Pedersen, Jungchul Lee
{"title":"用于直接PEGDA微图案制作的疏水表面","authors":"Anna Danielak,&nbsp;Juhee Ko,&nbsp;Aminul Islam,&nbsp;David Bue Pedersen,&nbsp;Jungchul Lee","doi":"10.1186/s40486-023-00169-8","DOIUrl":null,"url":null,"abstract":"<div><p>Photopolymerization of hydrogels films has gained interest in many biomedical and industrial fields. Hydrogel micro-patterns fabricated directly on a device are used as filtering barriers, however, due to weak mechanical properties, these parts require a stable support but deposition of hydrogel in non-polymerized state brings a risk of sinking inside the structure. These limitations can be overcome by applying a hydrophobic surface. This paper presents a novel two-step method, in which a hydrophobic surface was designed and manufactured using mask-projection vat photopolymerization additive manufacturing (VPP). Afterwards, PEGDA-based hydrogel photopolymers were deposited on the surface and a micro-scale patterns were cured. The parts were subjected to water immersion and heating in order to evaluate the swelling and shrinking behaviour of hydrogel. The parts remained stable on the substrate and maintained the properties and the results revealed the shape retention over 97%. This work shows that VPP can be applied in the manufacturing of hydrophobic surfaces for hydrogel photopolymer deposition and curing without sacrificing critical properties.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00169-8","citationCount":"0","resultStr":"{\"title\":\"Hydrophobic surface for direct PEGDA micro-pattern fabrication\",\"authors\":\"Anna Danielak,&nbsp;Juhee Ko,&nbsp;Aminul Islam,&nbsp;David Bue Pedersen,&nbsp;Jungchul Lee\",\"doi\":\"10.1186/s40486-023-00169-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photopolymerization of hydrogels films has gained interest in many biomedical and industrial fields. Hydrogel micro-patterns fabricated directly on a device are used as filtering barriers, however, due to weak mechanical properties, these parts require a stable support but deposition of hydrogel in non-polymerized state brings a risk of sinking inside the structure. These limitations can be overcome by applying a hydrophobic surface. This paper presents a novel two-step method, in which a hydrophobic surface was designed and manufactured using mask-projection vat photopolymerization additive manufacturing (VPP). Afterwards, PEGDA-based hydrogel photopolymers were deposited on the surface and a micro-scale patterns were cured. The parts were subjected to water immersion and heating in order to evaluate the swelling and shrinking behaviour of hydrogel. The parts remained stable on the substrate and maintained the properties and the results revealed the shape retention over 97%. This work shows that VPP can be applied in the manufacturing of hydrophobic surfaces for hydrogel photopolymer deposition and curing without sacrificing critical properties.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00169-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-023-00169-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-023-00169-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶膜的光聚合已在许多生物医学和工业领域引起了人们的兴趣。直接在器件上制备的水凝胶微图案被用作过滤屏障,但由于其力学性能较弱,这些部件需要稳定的支撑,而非聚合状态下的水凝胶沉积会带来在结构内部下沉的风险。这些限制可以通过应用疏水表面来克服。本文提出了一种新的两步法,利用掩模投影缸光聚合增材制造技术(VPP)设计和制造疏水表面。然后,在表面沉积聚乙二醇基水凝胶光聚合物并固化微尺度图案。为了评估水凝胶的膨胀和收缩行为,对零件进行了水浸泡和加热。零件在基体上保持稳定,保持了性能,形状保持率达97%以上。这项工作表明,VPP可以应用于水凝胶光聚合物沉积和固化的疏水表面的制造,而不牺牲关键性能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrophobic surface for direct PEGDA micro-pattern fabrication

Photopolymerization of hydrogels films has gained interest in many biomedical and industrial fields. Hydrogel micro-patterns fabricated directly on a device are used as filtering barriers, however, due to weak mechanical properties, these parts require a stable support but deposition of hydrogel in non-polymerized state brings a risk of sinking inside the structure. These limitations can be overcome by applying a hydrophobic surface. This paper presents a novel two-step method, in which a hydrophobic surface was designed and manufactured using mask-projection vat photopolymerization additive manufacturing (VPP). Afterwards, PEGDA-based hydrogel photopolymers were deposited on the surface and a micro-scale patterns were cured. The parts were subjected to water immersion and heating in order to evaluate the swelling and shrinking behaviour of hydrogel. The parts remained stable on the substrate and maintained the properties and the results revealed the shape retention over 97%. This work shows that VPP can be applied in the manufacturing of hydrophobic surfaces for hydrogel photopolymer deposition and curing without sacrificing critical properties.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信