复合材料实体计算中的虚拟离散模型方法

Q3 Materials Science
A. Matveev
{"title":"复合材料实体计算中的虚拟离散模型方法","authors":"A. Matveev","doi":"10.15593/perm.mech/2022.1.05","DOIUrl":null,"url":null,"abstract":"As is known, the calculation of the static strength of elastic composite bodies (CB) is reduced to finding the maximum equivalent stresses for these bodies. The finite element method (FEM) is widely used for the analysis of the stress state of CB. The basic discrete models (BM), which take into account the inhomogeneous structure of bodies in the framework of a micro-approach, have a high dimension. To reduce the dimension of discrete models, multigrid finite elements (MgFE) are effectively used. However, there are BM CB (for example, BM bodies with a micro-homogeneous structure), which have such a high dimension that the implementation of FEM for such BM using MgFE, due to limited computer resources, is difficult. To solve this problem, it is proposed to use fictitious discrete models whose dimensions are less than the dimension of the BM CB. In this paper, we propose a method of fictitious discrete models (MFDM) for calculating the strength of elastic bodies with an inhomogeneous, micro-homogeneous regular structure. The proposed method is implemented using FEM with the use of MgFE and adjusted strength conditions that take into account the error of approximate solutions. The method is based on the position that the solutions that meet the BM CB differ little from the exact ones. The calculation of CB according to MFDM is reduced to the construction and calculation of the strength of fictitious discrete models (FM), which have the following properties. The FM reflects: the shape, characteristic dimensions, attachment, loading and type of the inhomogeneous structure of the CB, and the distribution of elastic modulus corresponding to the BM CB. The FM dimension is less than the BM dimension of the CB. The sequence consisting of FM converges to BM, i.e. the limiting FM coincides with BM. The convergence of such a sequence ensures uniform convergence of the maximum equivalent voltages of the FM to the maximum equivalent voltage of the BM. Two types of FM are considered. The first type of FM consists of scaled discrete models, the second type consists of FM with variable characteristic dimensions. Calculations show that the implementation of FEM for FM using MgFE leads to a large saving of computer resources, which allows the use of MFDM for bodies with a micro-homogeneous regular structure. The calculation of the strength of CB according to MFDM requires times less computer memory than a similar calculation using BM CB, and does not contain a procedure for grinding BM. The use of adjusted strength conditions allows us to use approximate solutions with a large error in the calculations of CB for strength, which leads to an increase in the efficiency of MFDM. The given example of calculating the strength of a beam with an inhomogeneous regular fibrous structure according to MFDM shows its high efficiency.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The method of fictitious discrete models in calculations of composite bodies\",\"authors\":\"A. Matveev\",\"doi\":\"10.15593/perm.mech/2022.1.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As is known, the calculation of the static strength of elastic composite bodies (CB) is reduced to finding the maximum equivalent stresses for these bodies. The finite element method (FEM) is widely used for the analysis of the stress state of CB. The basic discrete models (BM), which take into account the inhomogeneous structure of bodies in the framework of a micro-approach, have a high dimension. To reduce the dimension of discrete models, multigrid finite elements (MgFE) are effectively used. However, there are BM CB (for example, BM bodies with a micro-homogeneous structure), which have such a high dimension that the implementation of FEM for such BM using MgFE, due to limited computer resources, is difficult. To solve this problem, it is proposed to use fictitious discrete models whose dimensions are less than the dimension of the BM CB. In this paper, we propose a method of fictitious discrete models (MFDM) for calculating the strength of elastic bodies with an inhomogeneous, micro-homogeneous regular structure. The proposed method is implemented using FEM with the use of MgFE and adjusted strength conditions that take into account the error of approximate solutions. The method is based on the position that the solutions that meet the BM CB differ little from the exact ones. The calculation of CB according to MFDM is reduced to the construction and calculation of the strength of fictitious discrete models (FM), which have the following properties. The FM reflects: the shape, characteristic dimensions, attachment, loading and type of the inhomogeneous structure of the CB, and the distribution of elastic modulus corresponding to the BM CB. The FM dimension is less than the BM dimension of the CB. The sequence consisting of FM converges to BM, i.e. the limiting FM coincides with BM. The convergence of such a sequence ensures uniform convergence of the maximum equivalent voltages of the FM to the maximum equivalent voltage of the BM. Two types of FM are considered. The first type of FM consists of scaled discrete models, the second type consists of FM with variable characteristic dimensions. Calculations show that the implementation of FEM for FM using MgFE leads to a large saving of computer resources, which allows the use of MFDM for bodies with a micro-homogeneous regular structure. The calculation of the strength of CB according to MFDM requires times less computer memory than a similar calculation using BM CB, and does not contain a procedure for grinding BM. The use of adjusted strength conditions allows us to use approximate solutions with a large error in the calculations of CB for strength, which leads to an increase in the efficiency of MFDM. The given example of calculating the strength of a beam with an inhomogeneous regular fibrous structure according to MFDM shows its high efficiency.\",\"PeriodicalId\":38176,\"journal\":{\"name\":\"PNRPU Mechanics Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNRPU Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15593/perm.mech/2022.1.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNRPU Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15593/perm.mech/2022.1.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,弹性复合材料静力强度的计算可以简化为寻找这些物体的最大等效应力。有限单元法(FEM)被广泛应用于CB的应力状态分析。基本离散模型(BM)在微观方法的框架内考虑了物体的非均匀结构,具有高维性。为了降低离散模型的维数,有效地采用了多网格有限元方法。然而,也有BM - CB(例如,具有微均匀结构的BM体),它们具有很高的维度,由于计算机资源有限,使用MgFE对此类BM进行有限元计算是困难的。为了解决这一问题,提出了使用维数小于BM模型维数的虚拟离散模型。本文提出了一种虚拟离散模型(MFDM)计算非均匀、微均匀规则结构弹性体强度的方法。该方法采用有限元法实现,采用MgFE和考虑近似解误差的调整强度条件。该方法是基于满足BM CB的解与精确解相差很小的位置。基于MFDM的CB计算可简化为虚拟离散模型(FM)强度的构建和计算,该模型具有以下性质。FM反映了CB的非均质结构的形状、特征尺寸、附着、载荷和类型,以及BM CB对应的弹性模量分布。FM维数小于CB的BM维数。由FM组成的序列收敛于BM,即极限FM与BM重合。这种序列的收敛性保证了FM的最大等效电压均匀地收敛到BM的最大等效电压。考虑了两种类型的调频。第一类调频由比例离散模型组成,第二类调频由可变特征维的调频组成。计算结果表明,用MFDM方法进行有限元模拟可大大节省计算机资源,从而使MFDM方法适用于具有微观均匀规则结构的物体。根据MFDM计算CB强度所需的计算机内存比使用BM CB进行类似计算少1倍,并且不包含研磨BM的程序。调整强度条件的使用允许我们在计算CB强度时使用误差较大的近似解,从而提高了MFDM的效率。给出了用MFDM计算非均匀规则纤维结构梁强度的实例,表明了该方法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The method of fictitious discrete models in calculations of composite bodies
As is known, the calculation of the static strength of elastic composite bodies (CB) is reduced to finding the maximum equivalent stresses for these bodies. The finite element method (FEM) is widely used for the analysis of the stress state of CB. The basic discrete models (BM), which take into account the inhomogeneous structure of bodies in the framework of a micro-approach, have a high dimension. To reduce the dimension of discrete models, multigrid finite elements (MgFE) are effectively used. However, there are BM CB (for example, BM bodies with a micro-homogeneous structure), which have such a high dimension that the implementation of FEM for such BM using MgFE, due to limited computer resources, is difficult. To solve this problem, it is proposed to use fictitious discrete models whose dimensions are less than the dimension of the BM CB. In this paper, we propose a method of fictitious discrete models (MFDM) for calculating the strength of elastic bodies with an inhomogeneous, micro-homogeneous regular structure. The proposed method is implemented using FEM with the use of MgFE and adjusted strength conditions that take into account the error of approximate solutions. The method is based on the position that the solutions that meet the BM CB differ little from the exact ones. The calculation of CB according to MFDM is reduced to the construction and calculation of the strength of fictitious discrete models (FM), which have the following properties. The FM reflects: the shape, characteristic dimensions, attachment, loading and type of the inhomogeneous structure of the CB, and the distribution of elastic modulus corresponding to the BM CB. The FM dimension is less than the BM dimension of the CB. The sequence consisting of FM converges to BM, i.e. the limiting FM coincides with BM. The convergence of such a sequence ensures uniform convergence of the maximum equivalent voltages of the FM to the maximum equivalent voltage of the BM. Two types of FM are considered. The first type of FM consists of scaled discrete models, the second type consists of FM with variable characteristic dimensions. Calculations show that the implementation of FEM for FM using MgFE leads to a large saving of computer resources, which allows the use of MFDM for bodies with a micro-homogeneous regular structure. The calculation of the strength of CB according to MFDM requires times less computer memory than a similar calculation using BM CB, and does not contain a procedure for grinding BM. The use of adjusted strength conditions allows us to use approximate solutions with a large error in the calculations of CB for strength, which leads to an increase in the efficiency of MFDM. The given example of calculating the strength of a beam with an inhomogeneous regular fibrous structure according to MFDM shows its high efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PNRPU Mechanics Bulletin
PNRPU Mechanics Bulletin Materials Science-Materials Science (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信