{"title":"振荡腔内壁面附近固体运动的实验研究","authors":"O. A. Vlasova, V. G. Kozlov","doi":"10.1007/s12217-023-10062-z","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamics of spherical and cylindrical bodies in the vicinity of the cylindrical wall of the cavity filled with fluid under rotational oscillations is experimentally studied. We consider (i) the motion of a light spherical body inside a cylinder under rotational oscillations and (ii) the motion of the heavy cylindrical body in a horizontal cavity under modulated rotation. In the absence of the oscillations, the bodies are pressed against the cavity walls due to the action of (i) the buoyant force and (ii) the centrifugal force. The tangential and rotational body oscillations are studied by means of video registration. It is found that the body oscillations induce the averaged lift force that is responsible for the detachment of the body from the wall at the critical value of the amplitude of the body oscillations. The oscillation-induced repulsive force is measured by the method of the body suspension in a static field of (i) gravitational force or (ii) centrifugal force. It is found that the dimensionless lift force decreases with the distance from the wall according to the exponential law. The magnitude of the lift force is determined only by the amplitude of the velocity of the tangential body oscillation relative to the surrounding fluid while the intensity of the rotational body oscillations is of no importance. Also, the lift force does not depend on the distance to the wall and increases with the dimensionless frequency ω in the studied range ω = 10 – 90. The phenomenon of the oscillation-induced repulsion of the solid from the cavity wall is of interest for the development of an effective method for the control of multiphase media under microgravity conditions.\n</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of the Solid Motion in the Vicinity of the Wall in an Oscillating Cavity\",\"authors\":\"O. A. Vlasova, V. G. Kozlov\",\"doi\":\"10.1007/s12217-023-10062-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamics of spherical and cylindrical bodies in the vicinity of the cylindrical wall of the cavity filled with fluid under rotational oscillations is experimentally studied. We consider (i) the motion of a light spherical body inside a cylinder under rotational oscillations and (ii) the motion of the heavy cylindrical body in a horizontal cavity under modulated rotation. In the absence of the oscillations, the bodies are pressed against the cavity walls due to the action of (i) the buoyant force and (ii) the centrifugal force. The tangential and rotational body oscillations are studied by means of video registration. It is found that the body oscillations induce the averaged lift force that is responsible for the detachment of the body from the wall at the critical value of the amplitude of the body oscillations. The oscillation-induced repulsive force is measured by the method of the body suspension in a static field of (i) gravitational force or (ii) centrifugal force. It is found that the dimensionless lift force decreases with the distance from the wall according to the exponential law. The magnitude of the lift force is determined only by the amplitude of the velocity of the tangential body oscillation relative to the surrounding fluid while the intensity of the rotational body oscillations is of no importance. Also, the lift force does not depend on the distance to the wall and increases with the dimensionless frequency ω in the studied range ω = 10 – 90. The phenomenon of the oscillation-induced repulsion of the solid from the cavity wall is of interest for the development of an effective method for the control of multiphase media under microgravity conditions.\\n</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10062-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10062-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Experimental Study of the Solid Motion in the Vicinity of the Wall in an Oscillating Cavity
The dynamics of spherical and cylindrical bodies in the vicinity of the cylindrical wall of the cavity filled with fluid under rotational oscillations is experimentally studied. We consider (i) the motion of a light spherical body inside a cylinder under rotational oscillations and (ii) the motion of the heavy cylindrical body in a horizontal cavity under modulated rotation. In the absence of the oscillations, the bodies are pressed against the cavity walls due to the action of (i) the buoyant force and (ii) the centrifugal force. The tangential and rotational body oscillations are studied by means of video registration. It is found that the body oscillations induce the averaged lift force that is responsible for the detachment of the body from the wall at the critical value of the amplitude of the body oscillations. The oscillation-induced repulsive force is measured by the method of the body suspension in a static field of (i) gravitational force or (ii) centrifugal force. It is found that the dimensionless lift force decreases with the distance from the wall according to the exponential law. The magnitude of the lift force is determined only by the amplitude of the velocity of the tangential body oscillation relative to the surrounding fluid while the intensity of the rotational body oscillations is of no importance. Also, the lift force does not depend on the distance to the wall and increases with the dimensionless frequency ω in the studied range ω = 10 – 90. The phenomenon of the oscillation-induced repulsion of the solid from the cavity wall is of interest for the development of an effective method for the control of multiphase media under microgravity conditions.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology