Afia Naeem, Muhammad Rizwan, Shtwai Alsubai, Ahmad Almadhor, Md. Akhtaruzzaman, Shayla Islam, Hameedur Rahman
{"title":"车载自组织网络中增强的基于集群的路由协议","authors":"Afia Naeem, Muhammad Rizwan, Shtwai Alsubai, Ahmad Almadhor, Md. Akhtaruzzaman, Shayla Islam, Hameedur Rahman","doi":"10.1049/els2.12069","DOIUrl":null,"url":null,"abstract":"<p>A vehicular ad-hoc network (VANET) is derived from a mobile ad-hoc network that is a part of less infrastructure network design. Vehicular communication in VANET can be achieved using vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. A vehicle communicates with other vehicles through onboard units while communicating with roadside units in an infrastructure mode. Secure clustering is required for the communication between nodes in the whole network. The fundamental problem with the VANET is the instability of the network that occurs due to vehicles' mobile nature, which decreases the network's efficiency. This research proposes an enhanced cluster-based lifetime protocol <i>ECBLTR</i> that focuses on maximising the network's stability of routing and average throughput. The Sugeno model fuzzy inference system is used for assessing the cluster head (CH) that takes residual energy, local distance, node degree, concentration, and distance from the base station as input parameters. Our enhanced routing protocol shows that the proper channel model with an efficient routing protocol enhances the link throughput of the VANET for fixed network size. Our results show an efficient selection method of CH through the fuzzy system and a 10% increase in network lifetime. Furthermore, performance evaluation also demonstrates the impact of network sizes and routing protocols on packet delivery ratio and packet loss, average end-to-end delay, and overhead transmission.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12069","citationCount":"10","resultStr":"{\"title\":\"Enhanced clustering based routing protocol in vehicular ad-hoc networks\",\"authors\":\"Afia Naeem, Muhammad Rizwan, Shtwai Alsubai, Ahmad Almadhor, Md. Akhtaruzzaman, Shayla Islam, Hameedur Rahman\",\"doi\":\"10.1049/els2.12069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A vehicular ad-hoc network (VANET) is derived from a mobile ad-hoc network that is a part of less infrastructure network design. Vehicular communication in VANET can be achieved using vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. A vehicle communicates with other vehicles through onboard units while communicating with roadside units in an infrastructure mode. Secure clustering is required for the communication between nodes in the whole network. The fundamental problem with the VANET is the instability of the network that occurs due to vehicles' mobile nature, which decreases the network's efficiency. This research proposes an enhanced cluster-based lifetime protocol <i>ECBLTR</i> that focuses on maximising the network's stability of routing and average throughput. The Sugeno model fuzzy inference system is used for assessing the cluster head (CH) that takes residual energy, local distance, node degree, concentration, and distance from the base station as input parameters. Our enhanced routing protocol shows that the proper channel model with an efficient routing protocol enhances the link throughput of the VANET for fixed network size. Our results show an efficient selection method of CH through the fuzzy system and a 10% increase in network lifetime. Furthermore, performance evaluation also demonstrates the impact of network sizes and routing protocols on packet delivery ratio and packet loss, average end-to-end delay, and overhead transmission.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12069\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/els2.12069\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2.12069","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced clustering based routing protocol in vehicular ad-hoc networks
A vehicular ad-hoc network (VANET) is derived from a mobile ad-hoc network that is a part of less infrastructure network design. Vehicular communication in VANET can be achieved using vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. A vehicle communicates with other vehicles through onboard units while communicating with roadside units in an infrastructure mode. Secure clustering is required for the communication between nodes in the whole network. The fundamental problem with the VANET is the instability of the network that occurs due to vehicles' mobile nature, which decreases the network's efficiency. This research proposes an enhanced cluster-based lifetime protocol ECBLTR that focuses on maximising the network's stability of routing and average throughput. The Sugeno model fuzzy inference system is used for assessing the cluster head (CH) that takes residual energy, local distance, node degree, concentration, and distance from the base station as input parameters. Our enhanced routing protocol shows that the proper channel model with an efficient routing protocol enhances the link throughput of the VANET for fixed network size. Our results show an efficient selection method of CH through the fuzzy system and a 10% increase in network lifetime. Furthermore, performance evaluation also demonstrates the impact of network sizes and routing protocols on packet delivery ratio and packet loss, average end-to-end delay, and overhead transmission.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.