{"title":"三维打印多孔钛合金表面改性研究进展","authors":"Hongwei Liu, Xi Cheng","doi":"10.4103/digm.digm_23_22","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) printed porous titanium alloy has good mechanical and physical properties and chemical stability. It is widely used in the field of additive manufacturing to realize the personalized customization of complex structures, such as industry, military, aerospace, and medicine, especially in the customization of personalized orthopedic implants and the repair and reconstruction of bone defects. However, due to the biological inertia of titanium alloy, the cell adhesion of the untreated metal surface is poor. Therefore, surface modification to enhance the biocompatibility and promote bone activity and antibacterial activity of 3D printed porous titanium alloy has become a research hotspot. In this article, the surface modification technology of 3D printing porous titanium alloys is reviewed from four aspects: physical modification, chemical modification, biochemical modification, and metal ion coating.","PeriodicalId":72818,"journal":{"name":"Digital medicine","volume":"9 1","pages":"1 - 1"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on surface modification of three-dimensional printing porous titanium alloys\",\"authors\":\"Hongwei Liu, Xi Cheng\",\"doi\":\"10.4103/digm.digm_23_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional (3D) printed porous titanium alloy has good mechanical and physical properties and chemical stability. It is widely used in the field of additive manufacturing to realize the personalized customization of complex structures, such as industry, military, aerospace, and medicine, especially in the customization of personalized orthopedic implants and the repair and reconstruction of bone defects. However, due to the biological inertia of titanium alloy, the cell adhesion of the untreated metal surface is poor. Therefore, surface modification to enhance the biocompatibility and promote bone activity and antibacterial activity of 3D printed porous titanium alloy has become a research hotspot. In this article, the surface modification technology of 3D printing porous titanium alloys is reviewed from four aspects: physical modification, chemical modification, biochemical modification, and metal ion coating.\",\"PeriodicalId\":72818,\"journal\":{\"name\":\"Digital medicine\",\"volume\":\"9 1\",\"pages\":\"1 - 1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/digm.digm_23_22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/digm.digm_23_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research progress on surface modification of three-dimensional printing porous titanium alloys
Three-dimensional (3D) printed porous titanium alloy has good mechanical and physical properties and chemical stability. It is widely used in the field of additive manufacturing to realize the personalized customization of complex structures, such as industry, military, aerospace, and medicine, especially in the customization of personalized orthopedic implants and the repair and reconstruction of bone defects. However, due to the biological inertia of titanium alloy, the cell adhesion of the untreated metal surface is poor. Therefore, surface modification to enhance the biocompatibility and promote bone activity and antibacterial activity of 3D printed porous titanium alloy has become a research hotspot. In this article, the surface modification technology of 3D printing porous titanium alloys is reviewed from four aspects: physical modification, chemical modification, biochemical modification, and metal ion coating.