Huili Wei, Guofeng Chang, Rongqun Shi, Sichuan Xu, Jinling Liu
{"title":"短切碳纤维增强质子交换膜燃料电池双极板石墨/聚丙烯复合材料的制备及性能研究","authors":"Huili Wei, Guofeng Chang, Rongqun Shi, Sichuan Xu, Jinling Liu","doi":"10.1002/fuce.202200098","DOIUrl":null,"url":null,"abstract":"<p>In this work, chopped carbon fibers (CCFs) with different lengths were added to graphite/polypropylene (PP) composite materials to achieve high conductivity and flexural strength performances, which are required for use in proton exchange membrane fuel cells. The effects of CCF length (2–4 mm), CCF content (0–5 wt.%), graphite type-natural flake graphite (NFG) and synthetic graphite (SG), and graphite particle size (18–106 µm) on the graphite/PP/CCFs composites are examined. The conductivities of the composites decrease significantly with increasing CCF length above 3 wt.%. CCFs improve the composite's strength, with a maximum strength of 45.8 MPa being achieved with 5 wt.% of 4 mm long CCFs. Composite with NFG exhibits superior conductivity to the one with SG but lacks flexural strength. The NFG particle size significantly affects the conductivity of the composite at high graphite contents, with a particle diameter of 75 µm resulting in maximum conductivity. An optimal composition with 38 µm/82 wt.% NFG and 2 mm/3 wt.% CCF, electrical conductivity, and flexural strength of 189.4 S/cm and 30.2 MPa, respectively, were achieved. Also, this composite exhibited interfacial contact resistance <math>\n <semantics>\n <mrow>\n <mn>2.52</mn>\n <mspace></mspace>\n <mi>m</mi>\n <mi>Ω</mi>\n <mo>·</mo>\n <mi>c</mi>\n <msup>\n <mi>m</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$2.52\\;{\\rm{m}}\\Omega \\cdot {\\rm{c}}{{\\rm{m}}^{\\rm{2}}}$</annotation>\n </semantics></math> and contact angles of 111°, which showed favorable interfacial conductivity and hydrophobicity performances.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton-exchange membrane fuel cell bipolar plates\",\"authors\":\"Huili Wei, Guofeng Chang, Rongqun Shi, Sichuan Xu, Jinling Liu\",\"doi\":\"10.1002/fuce.202200098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, chopped carbon fibers (CCFs) with different lengths were added to graphite/polypropylene (PP) composite materials to achieve high conductivity and flexural strength performances, which are required for use in proton exchange membrane fuel cells. The effects of CCF length (2–4 mm), CCF content (0–5 wt.%), graphite type-natural flake graphite (NFG) and synthetic graphite (SG), and graphite particle size (18–106 µm) on the graphite/PP/CCFs composites are examined. The conductivities of the composites decrease significantly with increasing CCF length above 3 wt.%. CCFs improve the composite's strength, with a maximum strength of 45.8 MPa being achieved with 5 wt.% of 4 mm long CCFs. Composite with NFG exhibits superior conductivity to the one with SG but lacks flexural strength. The NFG particle size significantly affects the conductivity of the composite at high graphite contents, with a particle diameter of 75 µm resulting in maximum conductivity. An optimal composition with 38 µm/82 wt.% NFG and 2 mm/3 wt.% CCF, electrical conductivity, and flexural strength of 189.4 S/cm and 30.2 MPa, respectively, were achieved. Also, this composite exhibited interfacial contact resistance <math>\\n <semantics>\\n <mrow>\\n <mn>2.52</mn>\\n <mspace></mspace>\\n <mi>m</mi>\\n <mi>Ω</mi>\\n <mo>·</mo>\\n <mi>c</mi>\\n <msup>\\n <mi>m</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$2.52\\\\;{\\\\rm{m}}\\\\Omega \\\\cdot {\\\\rm{c}}{{\\\\rm{m}}^{\\\\rm{2}}}$</annotation>\\n </semantics></math> and contact angles of 111°, which showed favorable interfacial conductivity and hydrophobicity performances.</p>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200098\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200098","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton-exchange membrane fuel cell bipolar plates
In this work, chopped carbon fibers (CCFs) with different lengths were added to graphite/polypropylene (PP) composite materials to achieve high conductivity and flexural strength performances, which are required for use in proton exchange membrane fuel cells. The effects of CCF length (2–4 mm), CCF content (0–5 wt.%), graphite type-natural flake graphite (NFG) and synthetic graphite (SG), and graphite particle size (18–106 µm) on the graphite/PP/CCFs composites are examined. The conductivities of the composites decrease significantly with increasing CCF length above 3 wt.%. CCFs improve the composite's strength, with a maximum strength of 45.8 MPa being achieved with 5 wt.% of 4 mm long CCFs. Composite with NFG exhibits superior conductivity to the one with SG but lacks flexural strength. The NFG particle size significantly affects the conductivity of the composite at high graphite contents, with a particle diameter of 75 µm resulting in maximum conductivity. An optimal composition with 38 µm/82 wt.% NFG and 2 mm/3 wt.% CCF, electrical conductivity, and flexural strength of 189.4 S/cm and 30.2 MPa, respectively, were achieved. Also, this composite exhibited interfacial contact resistance and contact angles of 111°, which showed favorable interfacial conductivity and hydrophobicity performances.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.