{"title":"𝔽具有许多自同构的p2极大曲线是Hermitian曲线覆盖的Galois","authors":"D. Bartoli, M. Montanucci, F. Torres","doi":"10.1515/advgeom-2021-0013","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝔽 be the finite field of order q2. It is sometimes attributed to Serre that any curve 𝔽-covered by the Hermitian curveHq+1:yq+1=xq+x ${{\\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x }^{q}}+x$is also 𝔽-maximal. For prime numbers q we show that every 𝔽-maximal curve x $\\mathcal{x}$of genus g ≥ 2 with | Aut(𝒳) | > 84(g − 1) is Galois-covered by Hq+1. ${{\\mathcal{H}}_{q+1}}.$The hypothesis on | Aut(𝒳) | is sharp, since there exists an 𝔽-maximal curve x $\\mathcal{x}$for q = 71 of genus g = 7 with | Aut(𝒳) | = 84(7 − 1) which is not Galois-covered by the Hermitian curve H72. ${{\\mathcal{H}}_{72}}.$","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"𝔽p2-maximal curves with many automorphisms are Galois-covered by the Hermitian curve\",\"authors\":\"D. Bartoli, M. Montanucci, F. Torres\",\"doi\":\"10.1515/advgeom-2021-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝔽 be the finite field of order q2. It is sometimes attributed to Serre that any curve 𝔽-covered by the Hermitian curveHq+1:yq+1=xq+x ${{\\\\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x }^{q}}+x$is also 𝔽-maximal. For prime numbers q we show that every 𝔽-maximal curve x $\\\\mathcal{x}$of genus g ≥ 2 with | Aut(𝒳) | > 84(g − 1) is Galois-covered by Hq+1. ${{\\\\mathcal{H}}_{q+1}}.$The hypothesis on | Aut(𝒳) | is sharp, since there exists an 𝔽-maximal curve x $\\\\mathcal{x}$for q = 71 of genus g = 7 with | Aut(𝒳) | = 84(7 − 1) which is not Galois-covered by the Hermitian curve H72. ${{\\\\mathcal{H}}_{72}}.$\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2021-0013\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
𝔽p2-maximal curves with many automorphisms are Galois-covered by the Hermitian curve
Abstract Let 𝔽 be the finite field of order q2. It is sometimes attributed to Serre that any curve 𝔽-covered by the Hermitian curveHq+1:yq+1=xq+x ${{\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x }^{q}}+x$is also 𝔽-maximal. For prime numbers q we show that every 𝔽-maximal curve x $\mathcal{x}$of genus g ≥ 2 with | Aut(𝒳) | > 84(g − 1) is Galois-covered by Hq+1. ${{\mathcal{H}}_{q+1}}.$The hypothesis on | Aut(𝒳) | is sharp, since there exists an 𝔽-maximal curve x $\mathcal{x}$for q = 71 of genus g = 7 with | Aut(𝒳) | = 84(7 − 1) which is not Galois-covered by the Hermitian curve H72. ${{\mathcal{H}}_{72}}.$
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.