滞止期和流速对铜管配水系统中可溶性和颗粒性铅浸出的影响

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL
Lu Chang , Joseph H.W. Lee
{"title":"滞止期和流速对铜管配水系统中可溶性和颗粒性铅浸出的影响","authors":"Lu Chang ,&nbsp;Joseph H.W. Lee","doi":"10.1016/j.jher.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Extremely high lead level in tap water caused by particulates has attracted increasing attention in recent years. Despite extensive research on the role of particulate Pb in water supply systems with lead service lines, little information is available on the role of particulate Pb in copper (Cu) water distribution systems. In this study, the dissolved, colloidal, and particulate lead and copper concentrations in representative prototype copper pipe water distribution systems with leaded solder joints and brass fixtures are measured. The effects of flow rate and stagnation time on metal fractionation are investigated. For each experimental scenario, all the water that stagnated inside the system is sampled to have a comprehensive understanding of lead contamination. Sampled at flow rates of 200–250 mL/s, the soluble lead and copper make up 60–96 % of the total concentration in the samples after hours of stagnation. More than half of the Pb and Cu particles are larger than 0.8 μm. Higher flow rates result in substantial increases in particulate metal concentrations but have no apparent effect on dissolved metals. The soluble and particulate copper concentrations (<span><math><mrow><mo>∼</mo></mrow></math></span> 100–250 μg/L) both increase with stagnation time. For the case of Pb, while the particulate concentration increases (up to <span><math><mrow><mo>∼</mo></mrow></math></span> 40 μg/L after 12 h), the soluble concentration does not change significantly beyond 4 h; this can be attributed to the different solubilities of Pb (<span><math><mrow><mo>∼</mo></mrow></math></span> 20 μg/L) and Cu (<span><math><mrow><mo>∼</mo></mrow></math></span> 200 μg/L) in tap water. The results also show that particulates suspended by clean “once through” water (without prior stagnation) can lead to high levels of Pb contamination (<span><math><mrow><mo>&gt;</mo></mrow></math></span> 10 μg/L).</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"49 ","pages":"Pages 1-9"},"PeriodicalIF":2.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of stagnation period and flow rate on soluble and particulate Pb leaching in copper pipe water distribution systems\",\"authors\":\"Lu Chang ,&nbsp;Joseph H.W. Lee\",\"doi\":\"10.1016/j.jher.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extremely high lead level in tap water caused by particulates has attracted increasing attention in recent years. Despite extensive research on the role of particulate Pb in water supply systems with lead service lines, little information is available on the role of particulate Pb in copper (Cu) water distribution systems. In this study, the dissolved, colloidal, and particulate lead and copper concentrations in representative prototype copper pipe water distribution systems with leaded solder joints and brass fixtures are measured. The effects of flow rate and stagnation time on metal fractionation are investigated. For each experimental scenario, all the water that stagnated inside the system is sampled to have a comprehensive understanding of lead contamination. Sampled at flow rates of 200–250 mL/s, the soluble lead and copper make up 60–96 % of the total concentration in the samples after hours of stagnation. More than half of the Pb and Cu particles are larger than 0.8 μm. Higher flow rates result in substantial increases in particulate metal concentrations but have no apparent effect on dissolved metals. The soluble and particulate copper concentrations (<span><math><mrow><mo>∼</mo></mrow></math></span> 100–250 μg/L) both increase with stagnation time. For the case of Pb, while the particulate concentration increases (up to <span><math><mrow><mo>∼</mo></mrow></math></span> 40 μg/L after 12 h), the soluble concentration does not change significantly beyond 4 h; this can be attributed to the different solubilities of Pb (<span><math><mrow><mo>∼</mo></mrow></math></span> 20 μg/L) and Cu (<span><math><mrow><mo>∼</mo></mrow></math></span> 200 μg/L) in tap water. The results also show that particulates suspended by clean “once through” water (without prior stagnation) can lead to high levels of Pb contamination (<span><math><mrow><mo>&gt;</mo></mrow></math></span> 10 μg/L).</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":\"49 \",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644323000242\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644323000242","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由颗粒物引起的自来水中铅含量极高引起了越来越多的关注。尽管对颗粒铅在带铅服务线的供水系统中的作用进行了广泛的研究,但关于颗粒铅在铜(Cu)配水系统中作用的信息很少。在这项研究中,测量了具有代表性的带铅焊点和黄铜夹具的铜管配水系统原型中溶解的、胶体的和颗粒的铅和铜浓度。研究了流速和停留时间对金属分馏的影响。对于每个实验场景,对系统内滞留的所有水进行采样,以全面了解铅污染。以200–250 mL/s的流速取样,停滞数小时后,可溶性铅和铜占样品总浓度的60–96%。超过一半的Pb和Cu颗粒大于0.8μm。较高的流速会导致颗粒金属浓度大幅增加,但对溶解的金属没有明显影响。可溶性和颗粒铜浓度(~100–250μg/L)均随停滞时间增加。对于Pb,当颗粒浓度增加(12小时后高达-40μg/L)时,可溶性浓度在4小时后没有显著变化;这可归因于Pb(~20μg/L)和Cu(~200μg/L)在自来水中的溶解度不同。结果还表明,清洁的“直流”水悬浮的颗粒物(之前没有停滞)会导致高水平的Pb污染(>;10μg/L)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of stagnation period and flow rate on soluble and particulate Pb leaching in copper pipe water distribution systems

Extremely high lead level in tap water caused by particulates has attracted increasing attention in recent years. Despite extensive research on the role of particulate Pb in water supply systems with lead service lines, little information is available on the role of particulate Pb in copper (Cu) water distribution systems. In this study, the dissolved, colloidal, and particulate lead and copper concentrations in representative prototype copper pipe water distribution systems with leaded solder joints and brass fixtures are measured. The effects of flow rate and stagnation time on metal fractionation are investigated. For each experimental scenario, all the water that stagnated inside the system is sampled to have a comprehensive understanding of lead contamination. Sampled at flow rates of 200–250 mL/s, the soluble lead and copper make up 60–96 % of the total concentration in the samples after hours of stagnation. More than half of the Pb and Cu particles are larger than 0.8 μm. Higher flow rates result in substantial increases in particulate metal concentrations but have no apparent effect on dissolved metals. The soluble and particulate copper concentrations ( 100–250 μg/L) both increase with stagnation time. For the case of Pb, while the particulate concentration increases (up to 40 μg/L after 12 h), the soluble concentration does not change significantly beyond 4 h; this can be attributed to the different solubilities of Pb ( 20 μg/L) and Cu ( 200 μg/L) in tap water. The results also show that particulates suspended by clean “once through” water (without prior stagnation) can lead to high levels of Pb contamination (> 10 μg/L).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信