{"title":"滞止期和流速对铜管配水系统中可溶性和颗粒性铅浸出的影响","authors":"Lu Chang , Joseph H.W. Lee","doi":"10.1016/j.jher.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Extremely high lead level in tap water caused by particulates has attracted increasing attention in recent years. Despite extensive research on the role of particulate Pb in water supply systems with lead service lines, little information is available on the role of particulate Pb in copper (Cu) water distribution systems. In this study, the dissolved, colloidal, and particulate lead and copper concentrations in representative prototype copper pipe water distribution systems with leaded solder joints and brass fixtures are measured. The effects of flow rate and stagnation time on metal fractionation are investigated. For each experimental scenario, all the water that stagnated inside the system is sampled to have a comprehensive understanding of lead contamination. Sampled at flow rates of 200–250 mL/s, the soluble lead and copper make up 60–96 % of the total concentration in the samples after hours of stagnation. More than half of the Pb and Cu particles are larger than 0.8 μm. Higher flow rates result in substantial increases in particulate metal concentrations but have no apparent effect on dissolved metals. The soluble and particulate copper concentrations (<span><math><mrow><mo>∼</mo></mrow></math></span> 100–250 μg/L) both increase with stagnation time. For the case of Pb, while the particulate concentration increases (up to <span><math><mrow><mo>∼</mo></mrow></math></span> 40 μg/L after 12 h), the soluble concentration does not change significantly beyond 4 h; this can be attributed to the different solubilities of Pb (<span><math><mrow><mo>∼</mo></mrow></math></span> 20 μg/L) and Cu (<span><math><mrow><mo>∼</mo></mrow></math></span> 200 μg/L) in tap water. The results also show that particulates suspended by clean “once through” water (without prior stagnation) can lead to high levels of Pb contamination (<span><math><mrow><mo>></mo></mrow></math></span> 10 μg/L).</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"49 ","pages":"Pages 1-9"},"PeriodicalIF":2.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of stagnation period and flow rate on soluble and particulate Pb leaching in copper pipe water distribution systems\",\"authors\":\"Lu Chang , Joseph H.W. Lee\",\"doi\":\"10.1016/j.jher.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extremely high lead level in tap water caused by particulates has attracted increasing attention in recent years. Despite extensive research on the role of particulate Pb in water supply systems with lead service lines, little information is available on the role of particulate Pb in copper (Cu) water distribution systems. In this study, the dissolved, colloidal, and particulate lead and copper concentrations in representative prototype copper pipe water distribution systems with leaded solder joints and brass fixtures are measured. The effects of flow rate and stagnation time on metal fractionation are investigated. For each experimental scenario, all the water that stagnated inside the system is sampled to have a comprehensive understanding of lead contamination. Sampled at flow rates of 200–250 mL/s, the soluble lead and copper make up 60–96 % of the total concentration in the samples after hours of stagnation. More than half of the Pb and Cu particles are larger than 0.8 μm. Higher flow rates result in substantial increases in particulate metal concentrations but have no apparent effect on dissolved metals. The soluble and particulate copper concentrations (<span><math><mrow><mo>∼</mo></mrow></math></span> 100–250 μg/L) both increase with stagnation time. For the case of Pb, while the particulate concentration increases (up to <span><math><mrow><mo>∼</mo></mrow></math></span> 40 μg/L after 12 h), the soluble concentration does not change significantly beyond 4 h; this can be attributed to the different solubilities of Pb (<span><math><mrow><mo>∼</mo></mrow></math></span> 20 μg/L) and Cu (<span><math><mrow><mo>∼</mo></mrow></math></span> 200 μg/L) in tap water. The results also show that particulates suspended by clean “once through” water (without prior stagnation) can lead to high levels of Pb contamination (<span><math><mrow><mo>></mo></mrow></math></span> 10 μg/L).</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":\"49 \",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644323000242\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644323000242","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effect of stagnation period and flow rate on soluble and particulate Pb leaching in copper pipe water distribution systems
Extremely high lead level in tap water caused by particulates has attracted increasing attention in recent years. Despite extensive research on the role of particulate Pb in water supply systems with lead service lines, little information is available on the role of particulate Pb in copper (Cu) water distribution systems. In this study, the dissolved, colloidal, and particulate lead and copper concentrations in representative prototype copper pipe water distribution systems with leaded solder joints and brass fixtures are measured. The effects of flow rate and stagnation time on metal fractionation are investigated. For each experimental scenario, all the water that stagnated inside the system is sampled to have a comprehensive understanding of lead contamination. Sampled at flow rates of 200–250 mL/s, the soluble lead and copper make up 60–96 % of the total concentration in the samples after hours of stagnation. More than half of the Pb and Cu particles are larger than 0.8 μm. Higher flow rates result in substantial increases in particulate metal concentrations but have no apparent effect on dissolved metals. The soluble and particulate copper concentrations ( 100–250 μg/L) both increase with stagnation time. For the case of Pb, while the particulate concentration increases (up to 40 μg/L after 12 h), the soluble concentration does not change significantly beyond 4 h; this can be attributed to the different solubilities of Pb ( 20 μg/L) and Cu ( 200 μg/L) in tap water. The results also show that particulates suspended by clean “once through” water (without prior stagnation) can lead to high levels of Pb contamination ( 10 μg/L).
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.