{"title":"大气中空气-水界面化学分析研究进展","authors":"Fei Zhang , Xiao-Ying Yu , Zhibin Wang","doi":"10.1016/j.teac.2022.e00182","DOIUrl":null,"url":null,"abstract":"<div><p><span>Formation of aqueous secondary organic aerosol (aqSOA) at the air – liquid interface recently has attracted a lot of attention in </span>atmospheric chemistry. The discrepancies in mass distributions, aerosol oxidative capacity, liquid water content, hygroscopic growth of aerosols, and formation of clouds and fogs suggest that interfacial chemistry play a more important role than previously deemed. However, detailed mechanisms at the air–water interface remain unclear owing to the lack of comprehensive understanding that underpins complicated interfacial phenomena, which are not easily measurable from field campaigns, laboratory measurements, or computational simulations. This review highlights relevant and recent technical advancement employed to study aqSOA encompassing spectroscopy and mass spectrometry. The current knowledge on the aqSOA processes is digested with an emphasis on recent research of interfacial aqSOA formation including laboratory studies and model simulations. Finally, future directions of the interfacial chemistry are recommended for field and laboratory studies as well as theoretical efforts to resolve interfacial challenges in atmospheric chemistry.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00182"},"PeriodicalIF":11.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical advances to study the air – water interfacial chemistry in the atmosphere\",\"authors\":\"Fei Zhang , Xiao-Ying Yu , Zhibin Wang\",\"doi\":\"10.1016/j.teac.2022.e00182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Formation of aqueous secondary organic aerosol (aqSOA) at the air – liquid interface recently has attracted a lot of attention in </span>atmospheric chemistry. The discrepancies in mass distributions, aerosol oxidative capacity, liquid water content, hygroscopic growth of aerosols, and formation of clouds and fogs suggest that interfacial chemistry play a more important role than previously deemed. However, detailed mechanisms at the air–water interface remain unclear owing to the lack of comprehensive understanding that underpins complicated interfacial phenomena, which are not easily measurable from field campaigns, laboratory measurements, or computational simulations. This review highlights relevant and recent technical advancement employed to study aqSOA encompassing spectroscopy and mass spectrometry. The current knowledge on the aqSOA processes is digested with an emphasis on recent research of interfacial aqSOA formation including laboratory studies and model simulations. Finally, future directions of the interfacial chemistry are recommended for field and laboratory studies as well as theoretical efforts to resolve interfacial challenges in atmospheric chemistry.</p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"36 \",\"pages\":\"Article e00182\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158822000290\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158822000290","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Analytical advances to study the air – water interfacial chemistry in the atmosphere
Formation of aqueous secondary organic aerosol (aqSOA) at the air – liquid interface recently has attracted a lot of attention in atmospheric chemistry. The discrepancies in mass distributions, aerosol oxidative capacity, liquid water content, hygroscopic growth of aerosols, and formation of clouds and fogs suggest that interfacial chemistry play a more important role than previously deemed. However, detailed mechanisms at the air–water interface remain unclear owing to the lack of comprehensive understanding that underpins complicated interfacial phenomena, which are not easily measurable from field campaigns, laboratory measurements, or computational simulations. This review highlights relevant and recent technical advancement employed to study aqSOA encompassing spectroscopy and mass spectrometry. The current knowledge on the aqSOA processes is digested with an emphasis on recent research of interfacial aqSOA formation including laboratory studies and model simulations. Finally, future directions of the interfacial chemistry are recommended for field and laboratory studies as well as theoretical efforts to resolve interfacial challenges in atmospheric chemistry.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.