有界拓扑加速的Bratteli图

Pub Date : 2023-02-19 DOI:10.1080/14689367.2023.2170775
Drew D. Ash, A. Dykstra, M. LeMasurier
{"title":"有界拓扑加速的Bratteli图","authors":"Drew D. Ash, A. Dykstra, M. LeMasurier","doi":"10.1080/14689367.2023.2170775","DOIUrl":null,"url":null,"abstract":"ABSTRACT A bounded topological speedup of a Cantor minimal system is a minimal system , where for some bounded function , or any system topologically conjugate to such an . Assuming the system is represented by a properly ordered Bratteli diagram , we provide a method for constructing a new, perfectly ordered Bratteli diagram that represents the sped-up system . The diagram relates back to in a manner that enables us to see how certain dynamical properties are preserved under speedup. As an application, in the case that is a substitution minimal system, we show how to use to write an explicit substitution rule that generates the sped-up system , answering an open question from [L. Alvin, D.D. Ash, and N.S. Ormes, Bounded topological speedups, Dyn. Syst. 33(2) (2018), pp. 303–331.].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bratteli diagrams for bounded topological speedups\",\"authors\":\"Drew D. Ash, A. Dykstra, M. LeMasurier\",\"doi\":\"10.1080/14689367.2023.2170775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A bounded topological speedup of a Cantor minimal system is a minimal system , where for some bounded function , or any system topologically conjugate to such an . Assuming the system is represented by a properly ordered Bratteli diagram , we provide a method for constructing a new, perfectly ordered Bratteli diagram that represents the sped-up system . The diagram relates back to in a manner that enables us to see how certain dynamical properties are preserved under speedup. As an application, in the case that is a substitution minimal system, we show how to use to write an explicit substitution rule that generates the sped-up system , answering an open question from [L. Alvin, D.D. Ash, and N.S. Ormes, Bounded topological speedups, Dyn. Syst. 33(2) (2018), pp. 303–331.].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2170775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2170775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:Cantor最小系统的有界拓扑加速是这样的最小系统,其中对于某个有界函数,或与这样的函数拓扑共轭的任何系统。假设系统由一个适当有序的Bratteli图表示,我们提供了一种构造一个新的、完全有序的Bratteli图来表示加速系统的方法。该图以一种使我们能够看到某些动态特性在加速下是如何保持的方式联系起来。作为一个应用程序,在替换最小系统的情况下,我们展示了如何使用编写显式替换规则来生成加速系统,回答了来自[L]的开放问题。Alvin, D.D. Ash和N.S. Ormes,有界拓扑加速,Dyn. system . 33(2) (2018), pp. 303-331。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bratteli diagrams for bounded topological speedups
ABSTRACT A bounded topological speedup of a Cantor minimal system is a minimal system , where for some bounded function , or any system topologically conjugate to such an . Assuming the system is represented by a properly ordered Bratteli diagram , we provide a method for constructing a new, perfectly ordered Bratteli diagram that represents the sped-up system . The diagram relates back to in a manner that enables us to see how certain dynamical properties are preserved under speedup. As an application, in the case that is a substitution minimal system, we show how to use to write an explicit substitution rule that generates the sped-up system , answering an open question from [L. Alvin, D.D. Ash, and N.S. Ormes, Bounded topological speedups, Dyn. Syst. 33(2) (2018), pp. 303–331.].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信