{"title":"氮氧化物标记大分子的连续波EPR光谱分析","authors":"Christian Altenbach, David Budil","doi":"10.1007/s00723-023-01610-2","DOIUrl":null,"url":null,"abstract":"<div><p>Historically, the primary result of an EPR experiment is the CW EPR spectrum, typically displayed as the first derivative of the absorption spectrum as a function of the magnetic field. Beyond very qualitative assessments, the detailed analysis of an experimental EPR spectrum is a difficult inverse problem. Given a set of parameters and a model, it is easy to calculate a spectrum, but given an EPR spectrum, it is a challenge to decide on the correct model and find all defining parameters of interest. Programs to simulate and fit CW EPR spectra have been around for a long time. Except for a very well-defined model system, an experimental spectrum of a spin labeled protein is typically a mix of multiple states. This article focuses on the analysis of the CW spectrum in several stages of detail, from qualitative to detailed. The use of the EPR lineshape fitting program MultiComponent developed in the Hubbell lab is used to illustrate common approaches to extract information relevant to protein structure, function, dynamics, and thermodynamics.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 1-3","pages":"159 - 186"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00723-023-01610-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Analyzing CW EPR Spectra of Nitroxide Labeled Macromolecules\",\"authors\":\"Christian Altenbach, David Budil\",\"doi\":\"10.1007/s00723-023-01610-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Historically, the primary result of an EPR experiment is the CW EPR spectrum, typically displayed as the first derivative of the absorption spectrum as a function of the magnetic field. Beyond very qualitative assessments, the detailed analysis of an experimental EPR spectrum is a difficult inverse problem. Given a set of parameters and a model, it is easy to calculate a spectrum, but given an EPR spectrum, it is a challenge to decide on the correct model and find all defining parameters of interest. Programs to simulate and fit CW EPR spectra have been around for a long time. Except for a very well-defined model system, an experimental spectrum of a spin labeled protein is typically a mix of multiple states. This article focuses on the analysis of the CW spectrum in several stages of detail, from qualitative to detailed. The use of the EPR lineshape fitting program MultiComponent developed in the Hubbell lab is used to illustrate common approaches to extract information relevant to protein structure, function, dynamics, and thermodynamics.</p></div>\",\"PeriodicalId\":469,\"journal\":{\"name\":\"Applied Magnetic Resonance\",\"volume\":\"55 1-3\",\"pages\":\"159 - 186\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00723-023-01610-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Magnetic Resonance\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00723-023-01610-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-023-01610-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Analyzing CW EPR Spectra of Nitroxide Labeled Macromolecules
Historically, the primary result of an EPR experiment is the CW EPR spectrum, typically displayed as the first derivative of the absorption spectrum as a function of the magnetic field. Beyond very qualitative assessments, the detailed analysis of an experimental EPR spectrum is a difficult inverse problem. Given a set of parameters and a model, it is easy to calculate a spectrum, but given an EPR spectrum, it is a challenge to decide on the correct model and find all defining parameters of interest. Programs to simulate and fit CW EPR spectra have been around for a long time. Except for a very well-defined model system, an experimental spectrum of a spin labeled protein is typically a mix of multiple states. This article focuses on the analysis of the CW spectrum in several stages of detail, from qualitative to detailed. The use of the EPR lineshape fitting program MultiComponent developed in the Hubbell lab is used to illustrate common approaches to extract information relevant to protein structure, function, dynamics, and thermodynamics.
期刊介绍:
Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields.
The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.