{"title":"织物悬垂性的多维分析","authors":"Bona Shin, Changsang Yun","doi":"10.1186/s40691-023-00352-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study analyzed fabric drapability in one, two, and three dimensions to provide an assessment method reflecting real conditions. One-dimensional analysis of drapability involved observing the fabric movement by reciprocating motion. The movement appeared differently depending on the fabric characteristics, and the shape and location of the node showed differently, which were considered to be influenced by the weight of the sample along with the drape coefficient. Two-dimensional analysis identified the significant factors for the drape information. This examination confirmed that, even if drape factors were similar, differences in draped shape were observed based on the factors related to node shapes. Three-dimensional analysis, using a 3D scanner, involved the use of the mean distances between draped samples and the standard truncated cone, their standard deviation, and the coefficient of variation. The coefficient of variation was high in the groups wherein the shape of the drape was irregular. In the 3D analysis, the distances between samples and the standard truncated cone were expressed in colors to intuitively deliver the drape information. To determine a factor that could indicate drapability among the factors derived from each dimension, the existing drape coefficient was employed for correlation analysis. Three pairs of samples with similar drape coefficients but different drape shapes were selected to verify the above results. In conclusion, one-dimensional node location, two-dimensional standard deviation of node severity, and three-dimensional coefficient of variation were shown to effectively demonstrate the drape characteristic that the drape coefficient could not indicate.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-023-00352-w","citationCount":"0","resultStr":"{\"title\":\"Multidimensional analysis for fabric drapability\",\"authors\":\"Bona Shin, Changsang Yun\",\"doi\":\"10.1186/s40691-023-00352-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study analyzed fabric drapability in one, two, and three dimensions to provide an assessment method reflecting real conditions. One-dimensional analysis of drapability involved observing the fabric movement by reciprocating motion. The movement appeared differently depending on the fabric characteristics, and the shape and location of the node showed differently, which were considered to be influenced by the weight of the sample along with the drape coefficient. Two-dimensional analysis identified the significant factors for the drape information. This examination confirmed that, even if drape factors were similar, differences in draped shape were observed based on the factors related to node shapes. Three-dimensional analysis, using a 3D scanner, involved the use of the mean distances between draped samples and the standard truncated cone, their standard deviation, and the coefficient of variation. The coefficient of variation was high in the groups wherein the shape of the drape was irregular. In the 3D analysis, the distances between samples and the standard truncated cone were expressed in colors to intuitively deliver the drape information. To determine a factor that could indicate drapability among the factors derived from each dimension, the existing drape coefficient was employed for correlation analysis. Three pairs of samples with similar drape coefficients but different drape shapes were selected to verify the above results. In conclusion, one-dimensional node location, two-dimensional standard deviation of node severity, and three-dimensional coefficient of variation were shown to effectively demonstrate the drape characteristic that the drape coefficient could not indicate.</p></div>\",\"PeriodicalId\":555,\"journal\":{\"name\":\"Fashion and Textiles\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-023-00352-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fashion and Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40691-023-00352-w\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-023-00352-w","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
This study analyzed fabric drapability in one, two, and three dimensions to provide an assessment method reflecting real conditions. One-dimensional analysis of drapability involved observing the fabric movement by reciprocating motion. The movement appeared differently depending on the fabric characteristics, and the shape and location of the node showed differently, which were considered to be influenced by the weight of the sample along with the drape coefficient. Two-dimensional analysis identified the significant factors for the drape information. This examination confirmed that, even if drape factors were similar, differences in draped shape were observed based on the factors related to node shapes. Three-dimensional analysis, using a 3D scanner, involved the use of the mean distances between draped samples and the standard truncated cone, their standard deviation, and the coefficient of variation. The coefficient of variation was high in the groups wherein the shape of the drape was irregular. In the 3D analysis, the distances between samples and the standard truncated cone were expressed in colors to intuitively deliver the drape information. To determine a factor that could indicate drapability among the factors derived from each dimension, the existing drape coefficient was employed for correlation analysis. Three pairs of samples with similar drape coefficients but different drape shapes were selected to verify the above results. In conclusion, one-dimensional node location, two-dimensional standard deviation of node severity, and three-dimensional coefficient of variation were shown to effectively demonstrate the drape characteristic that the drape coefficient could not indicate.
期刊介绍:
Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor.
The scope of the journal includes the following four technical research divisions:
Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles
Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing
Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion
Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.