R. Tripathi, D. Khalyavin, Shivani Sharma, D. Adroja, Z. Hossain
{"title":"中子衍射研究共掺杂对重费米子体系CeCu2Ge2磁性基态的影响","authors":"R. Tripathi, D. Khalyavin, Shivani Sharma, D. Adroja, Z. Hossain","doi":"10.3390/magnetochemistry9050115","DOIUrl":null,"url":null,"abstract":"The antiferromagnetic phase transition of the heavy-fermion system Ce(Cu1−xCox)2Ge2 for x = 0.05 and 0.2, showing up in specific heat, magnetic susceptibility, and muon spin relaxation (μSR) data, has been further investigated. The neutron diffraction (ND) results show that Co-doping drastically reduces the moment size of Ce, without a qualitative change in the magnetic structure of the undoped compound CeCu2Ge2. An incommensurate magnetic propagation vector k = (0.2852, 0.2852, 0.4495) with a cycloidal magnetic structure with a Ce moment of 0.55 μB in the ab-plane has been observed for x = 0.05. Although for x = 0.2 the specific heat and magnetic susceptibility data reflect a phase transition with a broad peak and the muon relaxation rate shows a sharp peak at T = 0.9 K, our ND data dismiss the possibility of a long-range magnetic ordering down to 50 mK. The ND data, along with previously reported results for x = 0.2, are interpreted in terms of the reduced ordered state magnetic moments of the Ce3+ ion by Kondo screening and the presence of dynamical short-range magnetic correlations.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Co-Doping on the Magnetic Ground State of the Heavy-Fermion System CeCu2Ge2 Studied by Neutron Diffraction\",\"authors\":\"R. Tripathi, D. Khalyavin, Shivani Sharma, D. Adroja, Z. Hossain\",\"doi\":\"10.3390/magnetochemistry9050115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The antiferromagnetic phase transition of the heavy-fermion system Ce(Cu1−xCox)2Ge2 for x = 0.05 and 0.2, showing up in specific heat, magnetic susceptibility, and muon spin relaxation (μSR) data, has been further investigated. The neutron diffraction (ND) results show that Co-doping drastically reduces the moment size of Ce, without a qualitative change in the magnetic structure of the undoped compound CeCu2Ge2. An incommensurate magnetic propagation vector k = (0.2852, 0.2852, 0.4495) with a cycloidal magnetic structure with a Ce moment of 0.55 μB in the ab-plane has been observed for x = 0.05. Although for x = 0.2 the specific heat and magnetic susceptibility data reflect a phase transition with a broad peak and the muon relaxation rate shows a sharp peak at T = 0.9 K, our ND data dismiss the possibility of a long-range magnetic ordering down to 50 mK. The ND data, along with previously reported results for x = 0.2, are interpreted in terms of the reduced ordered state magnetic moments of the Ce3+ ion by Kondo screening and the presence of dynamical short-range magnetic correlations.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9050115\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9050115","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Effect of Co-Doping on the Magnetic Ground State of the Heavy-Fermion System CeCu2Ge2 Studied by Neutron Diffraction
The antiferromagnetic phase transition of the heavy-fermion system Ce(Cu1−xCox)2Ge2 for x = 0.05 and 0.2, showing up in specific heat, magnetic susceptibility, and muon spin relaxation (μSR) data, has been further investigated. The neutron diffraction (ND) results show that Co-doping drastically reduces the moment size of Ce, without a qualitative change in the magnetic structure of the undoped compound CeCu2Ge2. An incommensurate magnetic propagation vector k = (0.2852, 0.2852, 0.4495) with a cycloidal magnetic structure with a Ce moment of 0.55 μB in the ab-plane has been observed for x = 0.05. Although for x = 0.2 the specific heat and magnetic susceptibility data reflect a phase transition with a broad peak and the muon relaxation rate shows a sharp peak at T = 0.9 K, our ND data dismiss the possibility of a long-range magnetic ordering down to 50 mK. The ND data, along with previously reported results for x = 0.2, are interpreted in terms of the reduced ordered state magnetic moments of the Ce3+ ion by Kondo screening and the presence of dynamical short-range magnetic correlations.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.