分布回归及其CRPS评估:极小极大风险的界和收敛性

IF 6.9 2区 经济学 Q1 ECONOMICS
Romain Pic , Clément Dombry , Philippe Naveau , Maxime Taillardat
{"title":"分布回归及其CRPS评估:极小极大风险的界和收敛性","authors":"Romain Pic ,&nbsp;Clément Dombry ,&nbsp;Philippe Naveau ,&nbsp;Maxime Taillardat","doi":"10.1016/j.ijforecast.2022.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>The theoretical advances in the properties of scoring rules over the past decades have broadened the use of scoring rules in probabilistic forecasting. In meteorological forecasting, statistical postprocessing techniques are essential to improve the forecasts made by deterministic physical models. Numerous state-of-the-art statistical postprocessing techniques are based on distributional regression evaluated with the continuous ranked probability score (CRPS). However, the theoretical properties of such evaluations with the CRPS have solely considered the unconditional framework (i.e. without covariates) and infinite sample sizes. We extend these results and study the rate of convergence in terms of the CRPS of distributional regression methods. We find the optimal minimax rate of convergence for a given class of distributions and show that the <span><math><mi>k</mi></math></span>-nearest neighbor method and the kernel method reach this optimal minimax rate.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"39 4","pages":"Pages 1564-1572"},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributional regression and its evaluation with the CRPS: Bounds and convergence of the minimax risk\",\"authors\":\"Romain Pic ,&nbsp;Clément Dombry ,&nbsp;Philippe Naveau ,&nbsp;Maxime Taillardat\",\"doi\":\"10.1016/j.ijforecast.2022.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The theoretical advances in the properties of scoring rules over the past decades have broadened the use of scoring rules in probabilistic forecasting. In meteorological forecasting, statistical postprocessing techniques are essential to improve the forecasts made by deterministic physical models. Numerous state-of-the-art statistical postprocessing techniques are based on distributional regression evaluated with the continuous ranked probability score (CRPS). However, the theoretical properties of such evaluations with the CRPS have solely considered the unconditional framework (i.e. without covariates) and infinite sample sizes. We extend these results and study the rate of convergence in terms of the CRPS of distributional regression methods. We find the optimal minimax rate of convergence for a given class of distributions and show that the <span><math><mi>k</mi></math></span>-nearest neighbor method and the kernel method reach this optimal minimax rate.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"39 4\",\"pages\":\"Pages 1564-1572\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207022001443\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001443","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

在过去的几十年里,评分规则性质的理论进展扩大了评分规则在概率预测中的应用。在气象预报中,统计后处理技术对于改进确定性物理模式所作的预报是必不可少的。许多最先进的统计后处理技术都是基于用连续排序概率评分(CRPS)评估的分布回归。然而,使用CRPS进行此类评估的理论性质仅考虑了无条件框架(即没有协变量)和无限样品量。我们推广了这些结果,并研究了分布回归方法的CRPS的收敛速度。我们找到了一类给定分布的最优极大极小收敛率,并证明了k近邻法和核方法达到了这个最优极大极小收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributional regression and its evaluation with the CRPS: Bounds and convergence of the minimax risk

The theoretical advances in the properties of scoring rules over the past decades have broadened the use of scoring rules in probabilistic forecasting. In meteorological forecasting, statistical postprocessing techniques are essential to improve the forecasts made by deterministic physical models. Numerous state-of-the-art statistical postprocessing techniques are based on distributional regression evaluated with the continuous ranked probability score (CRPS). However, the theoretical properties of such evaluations with the CRPS have solely considered the unconditional framework (i.e. without covariates) and infinite sample sizes. We extend these results and study the rate of convergence in terms of the CRPS of distributional regression methods. We find the optimal minimax rate of convergence for a given class of distributions and show that the k-nearest neighbor method and the kernel method reach this optimal minimax rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信