冬眠中的十三棱地松鼠(Ictidomys tridecemlineatus)的唤醒增加了氧化损伤

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Brynne Duffy, J. F. Staples
{"title":"冬眠中的十三棱地松鼠(Ictidomys tridecemlineatus)的唤醒增加了氧化损伤","authors":"Brynne Duffy, J. F. Staples","doi":"10.1086/719931","DOIUrl":null,"url":null,"abstract":"During hibernation, especially during arousal from torpor to interbout euthermia (IBE), blood flow changes drastically. In nonhibernating mammals, similar changes during ischemia/reperfusion lead to oxidative damage. We hypothesized that suppression of mitochondrial metabolism during hibernation protects against such damage. We compared markers of oxidative damage and total antioxidant capacity in eight tissues among summer, torpid, and IBE thirteen-lined ground squirrels. Overall, summer tissue had less lipid and protein oxidative damage than tissue from the hibernation season, but DNA damage (in four tissues) and total antioxidant capacity (in all eight tissues) were similar among all groups. During torpor, when mitochondrial metabolism is suppressed, lipid damage in heart, brown adipose tissue, and small intestine was lower than IBE by as much as fivefold. By contrast, oxidative damage to protein was at least twofold higher in liver and skeletal muscle in torpor compared with IBE. Our findings suggest that arousal from torpor creates oxidative damage similar to ischemia/reperfusion injury but that this damage is repaired during IBE. These differences cannot be explained by changes in antioxidant capacity, so they are likely due to differences is reactive oxygen species production among hibernation states that may relate to the well-characterized reversible suppression of mitochondrial metabolism during torpor.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Arousal from Torpor Increases Oxidative Damage in the Hibernating Thirteen-Lined Ground Squirrel (Ictidomys tridecemlineatus)\",\"authors\":\"Brynne Duffy, J. F. Staples\",\"doi\":\"10.1086/719931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During hibernation, especially during arousal from torpor to interbout euthermia (IBE), blood flow changes drastically. In nonhibernating mammals, similar changes during ischemia/reperfusion lead to oxidative damage. We hypothesized that suppression of mitochondrial metabolism during hibernation protects against such damage. We compared markers of oxidative damage and total antioxidant capacity in eight tissues among summer, torpid, and IBE thirteen-lined ground squirrels. Overall, summer tissue had less lipid and protein oxidative damage than tissue from the hibernation season, but DNA damage (in four tissues) and total antioxidant capacity (in all eight tissues) were similar among all groups. During torpor, when mitochondrial metabolism is suppressed, lipid damage in heart, brown adipose tissue, and small intestine was lower than IBE by as much as fivefold. By contrast, oxidative damage to protein was at least twofold higher in liver and skeletal muscle in torpor compared with IBE. Our findings suggest that arousal from torpor creates oxidative damage similar to ischemia/reperfusion injury but that this damage is repaired during IBE. These differences cannot be explained by changes in antioxidant capacity, so they are likely due to differences is reactive oxygen species production among hibernation states that may relate to the well-characterized reversible suppression of mitochondrial metabolism during torpor.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/719931\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/719931","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

在冬眠期间,特别是在从昏睡到间歇体温(IBE)的觉醒期间,血流量急剧变化。在非冬眠哺乳动物中,缺血/再灌注期间的类似变化导致氧化损伤。我们假设在冬眠期间抑制线粒体代谢可以防止这种损伤。我们比较了夏季、冬眠和IBE十三棱地松鼠8种组织中的氧化损伤标志物和总抗氧化能力。总体而言,与冬眠季节的组织相比,夏季组织的脂质和蛋白质氧化损伤较少,但DNA损伤(四种组织)和总抗氧化能力(所有八种组织)在所有组中相似。在冬眠期间,线粒体代谢受到抑制,心脏、棕色脂肪组织和小肠的脂质损伤比IBE低5倍之多。相比之下,与IBE相比,冬眠时肝脏和骨骼肌中蛋白质的氧化损伤至少高出两倍。我们的研究结果表明,从昏睡中唤醒会产生类似于缺血/再灌注损伤的氧化损伤,但这种损伤在IBE期间得到修复。这些差异不能用抗氧化能力的变化来解释,因此它们可能是由于冬眠状态中活性氧产生的差异,这可能与冬眠期间线粒体代谢的可逆抑制有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arousal from Torpor Increases Oxidative Damage in the Hibernating Thirteen-Lined Ground Squirrel (Ictidomys tridecemlineatus)
During hibernation, especially during arousal from torpor to interbout euthermia (IBE), blood flow changes drastically. In nonhibernating mammals, similar changes during ischemia/reperfusion lead to oxidative damage. We hypothesized that suppression of mitochondrial metabolism during hibernation protects against such damage. We compared markers of oxidative damage and total antioxidant capacity in eight tissues among summer, torpid, and IBE thirteen-lined ground squirrels. Overall, summer tissue had less lipid and protein oxidative damage than tissue from the hibernation season, but DNA damage (in four tissues) and total antioxidant capacity (in all eight tissues) were similar among all groups. During torpor, when mitochondrial metabolism is suppressed, lipid damage in heart, brown adipose tissue, and small intestine was lower than IBE by as much as fivefold. By contrast, oxidative damage to protein was at least twofold higher in liver and skeletal muscle in torpor compared with IBE. Our findings suggest that arousal from torpor creates oxidative damage similar to ischemia/reperfusion injury but that this damage is repaired during IBE. These differences cannot be explained by changes in antioxidant capacity, so they are likely due to differences is reactive oxygen species production among hibernation states that may relate to the well-characterized reversible suppression of mitochondrial metabolism during torpor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信