考虑其物理和生物变异的水果和蔬菜质量无损评价方法

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Shijie Tian, Huirong Xu
{"title":"考虑其物理和生物变异的水果和蔬菜质量无损评价方法","authors":"Shijie Tian,&nbsp;Huirong Xu","doi":"10.1007/s12393-021-09300-0","DOIUrl":null,"url":null,"abstract":"<div><p>Fruits and vegetables are very important agricultural products in daily life. Evaluating the quality attributes of fresh fruits and vegetables by nondestructive sensing techniques has been an intensive research topic over the past two decades. The research progress on the detection of internal and external quality attributes of fresh fruits and vegetables using various nondestructive spectroscopic and imaging techniques, including visible/near-infrared spectroscopy, time-resolved and space-resolved spectroscopy, machine vision, hyperspectral and multispectral imaging, fluorescence techniques, X-ray imaging, computed tomography scanning, magnetic resonance imaging, and Raman techniques, is presented and discussed in this review. Each kind of fruit or vegetable shows great variability in physical characteristics (including size, shape, color, and temperature) and biological characteristics (including cultivar, season, maturity level, and geographical origin). This physical and biological variability complicates the quality evaluation of fresh fruits and vegetables. To eliminate the influence of variability and improve the inspection accuracy, a lot of attempts, including pre-processing, light intensity transformation, global model, band math, model transfer, etc., have been made in image correction and spectral compensation methods. This review provides a detailed summary of the various methods for solving the problem of physical and biological variability, as well as their advantages and disadvantages. Additionally, the current problems to be solved in spectroscopic and imaging technologies and the research trends of nondestructive measurement of the quality of fresh fruits and vegetables in the future are also revealed.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"14 3","pages":"380 - 407"},"PeriodicalIF":5.3000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Nondestructive Methods for the Quality Assessment of Fruits and Vegetables Considering Their Physical and Biological Variability\",\"authors\":\"Shijie Tian,&nbsp;Huirong Xu\",\"doi\":\"10.1007/s12393-021-09300-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fruits and vegetables are very important agricultural products in daily life. Evaluating the quality attributes of fresh fruits and vegetables by nondestructive sensing techniques has been an intensive research topic over the past two decades. The research progress on the detection of internal and external quality attributes of fresh fruits and vegetables using various nondestructive spectroscopic and imaging techniques, including visible/near-infrared spectroscopy, time-resolved and space-resolved spectroscopy, machine vision, hyperspectral and multispectral imaging, fluorescence techniques, X-ray imaging, computed tomography scanning, magnetic resonance imaging, and Raman techniques, is presented and discussed in this review. Each kind of fruit or vegetable shows great variability in physical characteristics (including size, shape, color, and temperature) and biological characteristics (including cultivar, season, maturity level, and geographical origin). This physical and biological variability complicates the quality evaluation of fresh fruits and vegetables. To eliminate the influence of variability and improve the inspection accuracy, a lot of attempts, including pre-processing, light intensity transformation, global model, band math, model transfer, etc., have been made in image correction and spectral compensation methods. This review provides a detailed summary of the various methods for solving the problem of physical and biological variability, as well as their advantages and disadvantages. Additionally, the current problems to be solved in spectroscopic and imaging technologies and the research trends of nondestructive measurement of the quality of fresh fruits and vegetables in the future are also revealed.</p></div>\",\"PeriodicalId\":565,\"journal\":{\"name\":\"Food Engineering Reviews\",\"volume\":\"14 3\",\"pages\":\"380 - 407\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Engineering Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12393-021-09300-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-021-09300-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

水果和蔬菜是日常生活中非常重要的农产品。在过去的二十年里,利用无损传感技术评价新鲜果蔬的品质属性一直是一个热门的研究课题。本文综述了利用各种无损光谱和成像技术,包括可见光/近红外光谱、时间分辨和空间分辨光谱、机器视觉、高光谱和多光谱成像、荧光技术、x射线成像、计算机断层扫描、磁共振成像和拉曼技术等,检测新鲜果蔬内外品质属性的研究进展。每一种水果或蔬菜在物理特性(包括大小、形状、颜色和温度)和生物学特性(包括品种、季节、成熟度和产地)上都表现出很大的差异。这种物理和生物的可变性使新鲜水果和蔬菜的质量评价变得复杂。为了消除可变性的影响,提高检测精度,在图像校正和光谱补偿方法中进行了大量的尝试,包括预处理、光强变换、全局模型、波段数学、模型转移等。本文详细综述了解决物理和生物变异问题的各种方法,以及它们的优缺点。展望了目前光谱和成像技术有待解决的问题,以及未来新鲜果蔬品质无损检测的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondestructive Methods for the Quality Assessment of Fruits and Vegetables Considering Their Physical and Biological Variability

Fruits and vegetables are very important agricultural products in daily life. Evaluating the quality attributes of fresh fruits and vegetables by nondestructive sensing techniques has been an intensive research topic over the past two decades. The research progress on the detection of internal and external quality attributes of fresh fruits and vegetables using various nondestructive spectroscopic and imaging techniques, including visible/near-infrared spectroscopy, time-resolved and space-resolved spectroscopy, machine vision, hyperspectral and multispectral imaging, fluorescence techniques, X-ray imaging, computed tomography scanning, magnetic resonance imaging, and Raman techniques, is presented and discussed in this review. Each kind of fruit or vegetable shows great variability in physical characteristics (including size, shape, color, and temperature) and biological characteristics (including cultivar, season, maturity level, and geographical origin). This physical and biological variability complicates the quality evaluation of fresh fruits and vegetables. To eliminate the influence of variability and improve the inspection accuracy, a lot of attempts, including pre-processing, light intensity transformation, global model, band math, model transfer, etc., have been made in image correction and spectral compensation methods. This review provides a detailed summary of the various methods for solving the problem of physical and biological variability, as well as their advantages and disadvantages. Additionally, the current problems to be solved in spectroscopic and imaging technologies and the research trends of nondestructive measurement of the quality of fresh fruits and vegetables in the future are also revealed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Engineering Reviews
Food Engineering Reviews FOOD SCIENCE & TECHNOLOGY-
CiteScore
14.20
自引率
1.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信