钛铜合金的原位线+粉同步电弧增材制造

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-02-01 Epub Date: 2024-02-15 DOI:10.1089/3dp.2022.0378
Chuanchu Su, Yanhu Wang, Weimin Wu, Sergey Konovalov, Lei Huang, Xizhang Chen, Shuyang Qin
{"title":"钛铜合金的原位线+粉同步电弧增材制造","authors":"Chuanchu Su, Yanhu Wang, Weimin Wu, Sergey Konovalov, Lei Huang, Xizhang Chen, Shuyang Qin","doi":"10.1089/3dp.2022.0378","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a new wire + powder synchronous arc additive manufacturing technique was used to manufacture Ti-Cu alloys. The microstructure and properties of the as-fabricated alloys were studied. The results showed that the prepared Ti-Cu alloys have good properties. The Cu with high growth restriction factor can increase the constitutional supercooling zone in the Ti-Cu alloys, which can override the negative effect of a high thermal gradient in the manufacturing process. Through the observation of the microstructure, the as-printed Ti-Cu alloy specimens have equiaxed fine-grained microstructure. Through corrosion performance analysis, the Cu can also make the passivation film of the alloy more compact and make the alloy more corrosion resistant.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880637/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>In Situ</i> Wire + Powder Synchronous Arc Additive Manufacturing of Ti-Cu Alloys.\",\"authors\":\"Chuanchu Su, Yanhu Wang, Weimin Wu, Sergey Konovalov, Lei Huang, Xizhang Chen, Shuyang Qin\",\"doi\":\"10.1089/3dp.2022.0378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a new wire + powder synchronous arc additive manufacturing technique was used to manufacture Ti-Cu alloys. The microstructure and properties of the as-fabricated alloys were studied. The results showed that the prepared Ti-Cu alloys have good properties. The Cu with high growth restriction factor can increase the constitutional supercooling zone in the Ti-Cu alloys, which can override the negative effect of a high thermal gradient in the manufacturing process. Through the observation of the microstructure, the as-printed Ti-Cu alloy specimens have equiaxed fine-grained microstructure. Through corrosion performance analysis, the Cu can also make the passivation film of the alloy more compact and make the alloy more corrosion resistant.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0378\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0378","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用新型线材+粉末同步电弧增材制造技术制造钛铜合金。研究了制成合金的微观结构和性能。结果表明,制备的 Ti-Cu 合金具有良好的性能。具有高生长限制因子的铜可以增加 Ti-Cu 合金中的立宪过冷区,从而克服制造过程中高热梯度的负面影响。通过观察微观结构,印制的 Ti-Cu 合金试样具有等轴细晶粒微观结构。通过腐蚀性能分析,Cu 还能使合金的钝化膜更加致密,使合金更耐腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Situ Wire + Powder Synchronous Arc Additive Manufacturing of Ti-Cu Alloys.

In this study, a new wire + powder synchronous arc additive manufacturing technique was used to manufacture Ti-Cu alloys. The microstructure and properties of the as-fabricated alloys were studied. The results showed that the prepared Ti-Cu alloys have good properties. The Cu with high growth restriction factor can increase the constitutional supercooling zone in the Ti-Cu alloys, which can override the negative effect of a high thermal gradient in the manufacturing process. Through the observation of the microstructure, the as-printed Ti-Cu alloy specimens have equiaxed fine-grained microstructure. Through corrosion performance analysis, the Cu can also make the passivation film of the alloy more compact and make the alloy more corrosion resistant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信