{"title":"Clifford代数中的Beurling定理","authors":"Othman Tyr, Radouan Daher","doi":"10.1007/s00006-023-01284-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, the Clifford–Fourier transform introduced by E. Hitzer, satisfies some uncertainty principles similar to the Euclidean Fourier transform. An analog of the Beurling–Hörmander’s theorem for the Clifford–Fourier transform is obtained. As a straightforward consequence of Beurling’s theorem, other versions of the uncertainty principle, such as the Hardy, Gelfand–Shilov and Cowling–Price theorems are also deduced.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"33 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-023-01284-w.pdf","citationCount":"2","resultStr":"{\"title\":\"Beurling’s Theorem in the Clifford Algebras\",\"authors\":\"Othman Tyr, Radouan Daher\",\"doi\":\"10.1007/s00006-023-01284-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, the Clifford–Fourier transform introduced by E. Hitzer, satisfies some uncertainty principles similar to the Euclidean Fourier transform. An analog of the Beurling–Hörmander’s theorem for the Clifford–Fourier transform is obtained. As a straightforward consequence of Beurling’s theorem, other versions of the uncertainty principle, such as the Hardy, Gelfand–Shilov and Cowling–Price theorems are also deduced.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"33 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-023-01284-w.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-023-01284-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01284-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
In this research, the Clifford–Fourier transform introduced by E. Hitzer, satisfies some uncertainty principles similar to the Euclidean Fourier transform. An analog of the Beurling–Hörmander’s theorem for the Clifford–Fourier transform is obtained. As a straightforward consequence of Beurling’s theorem, other versions of the uncertainty principle, such as the Hardy, Gelfand–Shilov and Cowling–Price theorems are also deduced.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.