{"title":"关于度量空间上的凸结构","authors":"M. Choban","doi":"10.37193/cjm.2022.02.10","DOIUrl":null,"url":null,"abstract":"\"In the present paper we study the relationships between different concepts of convex structures in metric spaces that that are related to the works of K. Menger [Menger, K. Untersuchungen \\\"\"{u}ber allgemeine Metrik. {\\it Math. Ann.} {\\bf100} (1928), 75--163], H. Busemann [Busemann, H. {\\it The geometry of geodesics}, Academic Press, 1955], I. N. Herstein; J. Milnor [Herstein, I. N.; Milnor, J. An axiomatic approach to measurable utility. {\\it Econometrica} {\\bf21} (1953), 291--297], E. Michael [Michael, E. Convex structures and continuous selections. {\\it Canad. J. Math.} {\\bf11} (1959), 556--575], A. Nijenhuis [Nijenhuis, A. A note on hyperconvexity in Riemannian manifolds. {\\it Canad. J. Math.} {\\bf11} (1959), 576--582.], W. Takahashi; T. Shimizu [Shimizu, T.; Takahashi, W. Fixed points of multivalued mappings in certain metric spaces. {\\it Topol. Methods Nonlinear Anal.} {\\bf8} (1996), no. 1, 197--203 and Takahashi, W. A convexity in metric space and nonexpansive mappings I. {\\it Kodai Math. Sem. Rep.} {\\bf 22} (1970), 142--149], M. Taskovi\\'{c} [Taskovi\\'{c}, M. General convex topological spaces and fixed points. {\\it Math. Moravica} {\\bf 1} (1997), 127--134], Yu. A. Aminov [Aminov, Yu. A. Two-Dimensional Surfaces in 3-Dimensional and 4-Dimensional Euclidean Spaces. Results and Unsolved Problems. {\\it Ukr. Math. J.} {\\bf 71} (2019), no. 1, 1--38.], H. V. Machado [Machado, H. V. A characterization of convex subsets of normed spaces.{\\it Kodai Math. Sem. Rep.} {\\bf25} (1973), 307--320], and many other papers. Some well known examples of concrete convex structures are reexamined and the possibilities of different embeddings of metric spaces with convex structures are also studied. Corollary \\ref{C5.1} states that the Bolyai-Lobachevskii plane and the Bolyai-Lobachevskii half-plane are not isometrically embedding in some strictly convex normed space. A characteristic of the invariant metric generated by a norm is presented (Proposition \\ref{P4.1}). \"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"About convex structures on metric spaces\",\"authors\":\"M. Choban\",\"doi\":\"10.37193/cjm.2022.02.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In the present paper we study the relationships between different concepts of convex structures in metric spaces that that are related to the works of K. Menger [Menger, K. Untersuchungen \\\\\\\"\\\"{u}ber allgemeine Metrik. {\\\\it Math. Ann.} {\\\\bf100} (1928), 75--163], H. Busemann [Busemann, H. {\\\\it The geometry of geodesics}, Academic Press, 1955], I. N. Herstein; J. Milnor [Herstein, I. N.; Milnor, J. An axiomatic approach to measurable utility. {\\\\it Econometrica} {\\\\bf21} (1953), 291--297], E. Michael [Michael, E. Convex structures and continuous selections. {\\\\it Canad. J. Math.} {\\\\bf11} (1959), 556--575], A. Nijenhuis [Nijenhuis, A. A note on hyperconvexity in Riemannian manifolds. {\\\\it Canad. J. Math.} {\\\\bf11} (1959), 576--582.], W. Takahashi; T. Shimizu [Shimizu, T.; Takahashi, W. Fixed points of multivalued mappings in certain metric spaces. {\\\\it Topol. Methods Nonlinear Anal.} {\\\\bf8} (1996), no. 1, 197--203 and Takahashi, W. A convexity in metric space and nonexpansive mappings I. {\\\\it Kodai Math. Sem. Rep.} {\\\\bf 22} (1970), 142--149], M. Taskovi\\\\'{c} [Taskovi\\\\'{c}, M. General convex topological spaces and fixed points. {\\\\it Math. Moravica} {\\\\bf 1} (1997), 127--134], Yu. A. Aminov [Aminov, Yu. A. Two-Dimensional Surfaces in 3-Dimensional and 4-Dimensional Euclidean Spaces. Results and Unsolved Problems. {\\\\it Ukr. Math. J.} {\\\\bf 71} (2019), no. 1, 1--38.], H. V. Machado [Machado, H. V. A characterization of convex subsets of normed spaces.{\\\\it Kodai Math. Sem. Rep.} {\\\\bf25} (1973), 307--320], and many other papers. Some well known examples of concrete convex structures are reexamined and the possibilities of different embeddings of metric spaces with convex structures are also studied. Corollary \\\\ref{C5.1} states that the Bolyai-Lobachevskii plane and the Bolyai-Lobachevskii half-plane are not isometrically embedding in some strictly convex normed space. A characteristic of the invariant metric generated by a norm is presented (Proposition \\\\ref{P4.1}). \\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.02.10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.02.10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
“在本文中,我们研究了度量空间中凸结构的不同概念之间的关系,这些概念与K.Menger的作品有关[Menger,K.Untersuchungen\”{u}ber所有Metrik。{it Math.Ann.}{\bf100}(1928),75-163],H.Busemann〔Busemann,H.测地线的几何〕,学术出版社,1955年〕,I.N.Herstein;J.Milnor[Herstein,I.N.;Milnor,J.可测量效用的公理化方法。{\it Econometrica}{\bf21}(1953),291-297},E.Michael〔Michael,E.凸结构和连续选择。{\ it Canad.J.Math.}(1959),556-575〕,A.Nijenhuis〔Nijenheis,A.关于黎曼流形超凸性的注记;T.Shimizu[Shimizu,T.;Takahashi,W.某些度量空间中多值映射的不动点。拓扑方法非线性分析。(1996),第1197-2003号和Takahasi,W.度量空间中的凸性和非扩张映射。Kodai Math.Sem.Rep.(1970),142-149],M.Taskovi。一般凸拓扑空间和不动点。{\bf 1}(1997),127-134],余。A.Aminov[Aminov,Yu.A.三维和四维欧几里得空间中的二维曲面。结果和未解决的问题。{\bf71}(2019),第1,1-38.],H.V.Machado[Machado,H.V.赋范空间凸子集的刻画。{\it Kodai Math.Sem.Rep.}{\bf25}(1973),307-320],以及许多其他论文。对具体凸结构的一些著名例子进行了重新审视,并研究了具有凸结构的度量空间的不同嵌入的可能性。推论\ref{C5.1}指出Bolyai-Lobachevskii平面和Bolyai-Logachevskii半平面不是等距嵌入在一些严格凸赋范空间中。给出了由范数生成的不变度量的一个特征(命题\ref{P4.1})。”
"In the present paper we study the relationships between different concepts of convex structures in metric spaces that that are related to the works of K. Menger [Menger, K. Untersuchungen \""{u}ber allgemeine Metrik. {\it Math. Ann.} {\bf100} (1928), 75--163], H. Busemann [Busemann, H. {\it The geometry of geodesics}, Academic Press, 1955], I. N. Herstein; J. Milnor [Herstein, I. N.; Milnor, J. An axiomatic approach to measurable utility. {\it Econometrica} {\bf21} (1953), 291--297], E. Michael [Michael, E. Convex structures and continuous selections. {\it Canad. J. Math.} {\bf11} (1959), 556--575], A. Nijenhuis [Nijenhuis, A. A note on hyperconvexity in Riemannian manifolds. {\it Canad. J. Math.} {\bf11} (1959), 576--582.], W. Takahashi; T. Shimizu [Shimizu, T.; Takahashi, W. Fixed points of multivalued mappings in certain metric spaces. {\it Topol. Methods Nonlinear Anal.} {\bf8} (1996), no. 1, 197--203 and Takahashi, W. A convexity in metric space and nonexpansive mappings I. {\it Kodai Math. Sem. Rep.} {\bf 22} (1970), 142--149], M. Taskovi\'{c} [Taskovi\'{c}, M. General convex topological spaces and fixed points. {\it Math. Moravica} {\bf 1} (1997), 127--134], Yu. A. Aminov [Aminov, Yu. A. Two-Dimensional Surfaces in 3-Dimensional and 4-Dimensional Euclidean Spaces. Results and Unsolved Problems. {\it Ukr. Math. J.} {\bf 71} (2019), no. 1, 1--38.], H. V. Machado [Machado, H. V. A characterization of convex subsets of normed spaces.{\it Kodai Math. Sem. Rep.} {\bf25} (1973), 307--320], and many other papers. Some well known examples of concrete convex structures are reexamined and the possibilities of different embeddings of metric spaces with convex structures are also studied. Corollary \ref{C5.1} states that the Bolyai-Lobachevskii plane and the Bolyai-Lobachevskii half-plane are not isometrically embedding in some strictly convex normed space. A characteristic of the invariant metric generated by a norm is presented (Proposition \ref{P4.1}). "
期刊介绍:
Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.