{"title":"用眼动追踪技术检验Tinkercad应用程序在机器人教育教学中的可用性","authors":"Rumeysa Erdogan, Zeynep Saglam, Gulay Cetintav, Fatma Gizem Karaoglan Yilmaz","doi":"10.1186/s40561-023-00242-0","DOIUrl":null,"url":null,"abstract":"<p><p>Like all sectors, the education sector has been negatively affected by the Covid-19 pandemic. Considering the decision to conduct face-to-face training in schools remotely, teachers had many difficulties in moving course content to the online platform. Teachers who perform robotic coding applications are looking for ways to do these activities remotely. Simulators enable real objects to be animated in a computer environment. There are many paid and free platforms that simulate robotic coding tools. Arduino and Micro:bit, can be simulated on the Tinkercad platform. This study tests the usability of the Tinkercad platform by teachers. In usability tests, users are expected to complete the authentic tasks they must perform on the tested platform. In this study, 12 Information Technology teachers tried to complete 10 authentic tasks in the Circuits section of the Tinkercad platform. Eye movements have been recorded and analyzed while participants perform tasks. Surveys were applied to the participants and data were collected with the observation form during the tests. Consequently, the teachers who completed the usability tests stated that it is appropriate for the platform to be used by teachers and students over 10 years of age and that they can use the platform in their activities.</p>","PeriodicalId":21774,"journal":{"name":"Smart Learning Environments","volume":" ","pages":"27"},"PeriodicalIF":12.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034876/pdf/","citationCount":"0","resultStr":"{\"title\":\"Examination of the usability of Tinkercad application in educational robotics teaching by eye tracking technique.\",\"authors\":\"Rumeysa Erdogan, Zeynep Saglam, Gulay Cetintav, Fatma Gizem Karaoglan Yilmaz\",\"doi\":\"10.1186/s40561-023-00242-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Like all sectors, the education sector has been negatively affected by the Covid-19 pandemic. Considering the decision to conduct face-to-face training in schools remotely, teachers had many difficulties in moving course content to the online platform. Teachers who perform robotic coding applications are looking for ways to do these activities remotely. Simulators enable real objects to be animated in a computer environment. There are many paid and free platforms that simulate robotic coding tools. Arduino and Micro:bit, can be simulated on the Tinkercad platform. This study tests the usability of the Tinkercad platform by teachers. In usability tests, users are expected to complete the authentic tasks they must perform on the tested platform. In this study, 12 Information Technology teachers tried to complete 10 authentic tasks in the Circuits section of the Tinkercad platform. Eye movements have been recorded and analyzed while participants perform tasks. Surveys were applied to the participants and data were collected with the observation form during the tests. Consequently, the teachers who completed the usability tests stated that it is appropriate for the platform to be used by teachers and students over 10 years of age and that they can use the platform in their activities.</p>\",\"PeriodicalId\":21774,\"journal\":{\"name\":\"Smart Learning Environments\",\"volume\":\" \",\"pages\":\"27\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Learning Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40561-023-00242-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Learning Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40561-023-00242-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Examination of the usability of Tinkercad application in educational robotics teaching by eye tracking technique.
Like all sectors, the education sector has been negatively affected by the Covid-19 pandemic. Considering the decision to conduct face-to-face training in schools remotely, teachers had many difficulties in moving course content to the online platform. Teachers who perform robotic coding applications are looking for ways to do these activities remotely. Simulators enable real objects to be animated in a computer environment. There are many paid and free platforms that simulate robotic coding tools. Arduino and Micro:bit, can be simulated on the Tinkercad platform. This study tests the usability of the Tinkercad platform by teachers. In usability tests, users are expected to complete the authentic tasks they must perform on the tested platform. In this study, 12 Information Technology teachers tried to complete 10 authentic tasks in the Circuits section of the Tinkercad platform. Eye movements have been recorded and analyzed while participants perform tasks. Surveys were applied to the participants and data were collected with the observation form during the tests. Consequently, the teachers who completed the usability tests stated that it is appropriate for the platform to be used by teachers and students over 10 years of age and that they can use the platform in their activities.