微生物对光动力疗法的耐药性

A. Mackay
{"title":"微生物对光动力疗法的耐药性","authors":"A. Mackay","doi":"10.33696/immunology.4.139","DOIUrl":null,"url":null,"abstract":"Microbial resistance to antibiotics has become a major area of research having caused over a million human deaths in 2019. At present, lower respiratory infection is the most burdensome disease. Antimicrobial Photodynamic Therapy (PDT) is regularly reported not to cause resistance in any pathogen, and to eradicate both microbes that are susceptible to antibiotics and those that are resistant. However, evidence now suggests that resistance to photosensitiser drugs at low concentrations is possible, and that tolerance to the reactive oxygen species (ROS) created during subsequent light exposure will occur eventually. Additionally, an increased optical fluence and the addition of medication have been necessary to destroy antibiotic resistant strains of Staphylococcus Aureus . Research has mostly focussed on bacteria, though the importance of fungi is highlighted here given the ubiquity of clinical manifestations like mycosis and urinary tract infection. Proposed next steps are the definition of terminology and methodology for experiments on microbial resistance/tolerance to PDT, varying the photosensitiser used for repeat PDT while controlling oxygen and salt levels, and alternative treatments including the interception of neuroimmunological signalling. Similar to the ESKAPE ranking of antibiotic resistant pathogens, a list summarising the degree of microbial resistance to PDT may have a place.","PeriodicalId":73644,"journal":{"name":"Journal of cellular immunology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microbial Resistance to Photodynamic Therapy\",\"authors\":\"A. Mackay\",\"doi\":\"10.33696/immunology.4.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbial resistance to antibiotics has become a major area of research having caused over a million human deaths in 2019. At present, lower respiratory infection is the most burdensome disease. Antimicrobial Photodynamic Therapy (PDT) is regularly reported not to cause resistance in any pathogen, and to eradicate both microbes that are susceptible to antibiotics and those that are resistant. However, evidence now suggests that resistance to photosensitiser drugs at low concentrations is possible, and that tolerance to the reactive oxygen species (ROS) created during subsequent light exposure will occur eventually. Additionally, an increased optical fluence and the addition of medication have been necessary to destroy antibiotic resistant strains of Staphylococcus Aureus . Research has mostly focussed on bacteria, though the importance of fungi is highlighted here given the ubiquity of clinical manifestations like mycosis and urinary tract infection. Proposed next steps are the definition of terminology and methodology for experiments on microbial resistance/tolerance to PDT, varying the photosensitiser used for repeat PDT while controlling oxygen and salt levels, and alternative treatments including the interception of neuroimmunological signalling. Similar to the ESKAPE ranking of antibiotic resistant pathogens, a list summarising the degree of microbial resistance to PDT may have a place.\",\"PeriodicalId\":73644,\"journal\":{\"name\":\"Journal of cellular immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cellular immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33696/immunology.4.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/immunology.4.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

微生物对抗生素的耐药性已成为一个主要研究领域,2019年已导致100多万人死亡。目前,下呼吸道感染是最严重的疾病。抗菌光动力疗法(PDT)经常被报道不会对任何病原体产生耐药性,并且可以根除对抗生素敏感的微生物和耐药的微生物。然而,现在的证据表明,在低浓度下对光敏剂药物的耐药性是可能的,并且最终会对随后的光照中产生的活性氧产生耐受性。此外,增加光学通量和添加药物对于摧毁金黄色葡萄球菌的抗生素耐药性菌株是必要的。研究主要集中在细菌上,尽管考虑到真菌病和尿路感染等临床表现的普遍性,真菌的重要性在这里得到了强调。建议的下一步是定义微生物对PDT的耐药性/耐受性实验的术语和方法,在控制氧气和盐水平的同时改变用于重复PDT的光敏剂,以及包括阻断神经免疫信号在内的替代治疗。类似于抗生素耐药性病原体的ESKAPE排名,总结微生物对PDT的耐药性程度的列表可能有一席之地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial Resistance to Photodynamic Therapy
Microbial resistance to antibiotics has become a major area of research having caused over a million human deaths in 2019. At present, lower respiratory infection is the most burdensome disease. Antimicrobial Photodynamic Therapy (PDT) is regularly reported not to cause resistance in any pathogen, and to eradicate both microbes that are susceptible to antibiotics and those that are resistant. However, evidence now suggests that resistance to photosensitiser drugs at low concentrations is possible, and that tolerance to the reactive oxygen species (ROS) created during subsequent light exposure will occur eventually. Additionally, an increased optical fluence and the addition of medication have been necessary to destroy antibiotic resistant strains of Staphylococcus Aureus . Research has mostly focussed on bacteria, though the importance of fungi is highlighted here given the ubiquity of clinical manifestations like mycosis and urinary tract infection. Proposed next steps are the definition of terminology and methodology for experiments on microbial resistance/tolerance to PDT, varying the photosensitiser used for repeat PDT while controlling oxygen and salt levels, and alternative treatments including the interception of neuroimmunological signalling. Similar to the ESKAPE ranking of antibiotic resistant pathogens, a list summarising the degree of microbial resistance to PDT may have a place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信