无铅双钙钛矿薄膜中的阴离子/阳离子取代:用于带隙优化

IF 0.3 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bhawna, A. Alam, M. Aslam
{"title":"无铅双钙钛矿薄膜中的阴离子/阳离子取代:用于带隙优化","authors":"Bhawna, A. Alam, M. Aslam","doi":"10.1680/jnaen.23.00001","DOIUrl":null,"url":null,"abstract":"During the past few years, halide double perovskites have been extensively explored for designing eco-friendly and stable perovskite-family absorber materials. In this work, thin films of Cs2AgBiBr6 double perovskites were successfully fabricated with the aim of obtaining a lead-free system. Optical studies confirmed the large band gap of 2.33 eV of Cs2AgBiBr6 films. Post-synthetic vapor treatment of Cs2AgBiBr6 thin films, with tin (IV) iodide (SnI4; SI), was performed to engineer their optical response. Structural and optical studies confirmed the phase purity of the various SI-treated films. X-ray diffraction studies further showed a systematic shift toward lower 2θ values, which signified the expansion of lattice parameters on SI substitution in the Cs2AgBiBr6 structure. The as-prepared pristine and SI-treated films showed good coverage with a reasonably large grain size. Furthermore, the optical studies revealed a 0.47 eV reduction in the band gap of SI-treated films, as opposed to a small band-gap change of approximately 0.22 eV when the pristine Cs2AgBiBr6 film was treated with cesium iodide (CsI). This showed the role of the combined effects of charge-balancing defects and compositional substitution in band-gap lowering in Cs2AgBiBr6. The controlled doping in lead-free double perovskites for improved optical properties might help in strengthening their use for future optoelectronic applications.","PeriodicalId":44365,"journal":{"name":"Nanomaterials and Energy","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anion/cation substitution in lead-free double-perovskite films: for band-gap optimization\",\"authors\":\"Bhawna, A. Alam, M. Aslam\",\"doi\":\"10.1680/jnaen.23.00001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the past few years, halide double perovskites have been extensively explored for designing eco-friendly and stable perovskite-family absorber materials. In this work, thin films of Cs2AgBiBr6 double perovskites were successfully fabricated with the aim of obtaining a lead-free system. Optical studies confirmed the large band gap of 2.33 eV of Cs2AgBiBr6 films. Post-synthetic vapor treatment of Cs2AgBiBr6 thin films, with tin (IV) iodide (SnI4; SI), was performed to engineer their optical response. Structural and optical studies confirmed the phase purity of the various SI-treated films. X-ray diffraction studies further showed a systematic shift toward lower 2θ values, which signified the expansion of lattice parameters on SI substitution in the Cs2AgBiBr6 structure. The as-prepared pristine and SI-treated films showed good coverage with a reasonably large grain size. Furthermore, the optical studies revealed a 0.47 eV reduction in the band gap of SI-treated films, as opposed to a small band-gap change of approximately 0.22 eV when the pristine Cs2AgBiBr6 film was treated with cesium iodide (CsI). This showed the role of the combined effects of charge-balancing defects and compositional substitution in band-gap lowering in Cs2AgBiBr6. The controlled doping in lead-free double perovskites for improved optical properties might help in strengthening their use for future optoelectronic applications.\",\"PeriodicalId\":44365,\"journal\":{\"name\":\"Nanomaterials and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jnaen.23.00001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jnaen.23.00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对卤化物双钙钛矿进行了广泛的探索,以设计出环保、稳定的钙钛矿系吸收材料。在这项工作中,成功地制备了Cs2AgBiBr6双钙钛矿薄膜,目的是获得无铅体系。光学研究证实了Cs2AgBiBr6薄膜具有2.33 eV的大带隙。用碘化锡(sn4)对Cs2AgBiBr6薄膜进行合成后气相处理SI),以设计其光学响应。结构和光学研究证实了各种硅处理薄膜的相纯度。x射线衍射研究进一步表明,在Cs2AgBiBr6结构中,晶格参数向较低的2θ值有系统的转移,这表明SI取代的扩展。制备的原始和si处理的薄膜具有良好的覆盖度和相当大的晶粒尺寸。此外,光学研究表明,si处理后的薄膜带隙减少了0.47 eV,而原始的Cs2AgBiBr6薄膜用碘化铯(CsI)处理后的带隙变化很小,约为0.22 eV。这表明了电荷平衡缺陷和成分取代在降低Cs2AgBiBr6带隙中的共同作用。在无铅双钙钛矿中控制掺杂以改善光学性能可能有助于加强其在未来光电应用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anion/cation substitution in lead-free double-perovskite films: for band-gap optimization
During the past few years, halide double perovskites have been extensively explored for designing eco-friendly and stable perovskite-family absorber materials. In this work, thin films of Cs2AgBiBr6 double perovskites were successfully fabricated with the aim of obtaining a lead-free system. Optical studies confirmed the large band gap of 2.33 eV of Cs2AgBiBr6 films. Post-synthetic vapor treatment of Cs2AgBiBr6 thin films, with tin (IV) iodide (SnI4; SI), was performed to engineer their optical response. Structural and optical studies confirmed the phase purity of the various SI-treated films. X-ray diffraction studies further showed a systematic shift toward lower 2θ values, which signified the expansion of lattice parameters on SI substitution in the Cs2AgBiBr6 structure. The as-prepared pristine and SI-treated films showed good coverage with a reasonably large grain size. Furthermore, the optical studies revealed a 0.47 eV reduction in the band gap of SI-treated films, as opposed to a small band-gap change of approximately 0.22 eV when the pristine Cs2AgBiBr6 film was treated with cesium iodide (CsI). This showed the role of the combined effects of charge-balancing defects and compositional substitution in band-gap lowering in Cs2AgBiBr6. The controlled doping in lead-free double perovskites for improved optical properties might help in strengthening their use for future optoelectronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials and Energy
Nanomaterials and Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信