含硼生物活性玻璃在静态和动态条件下在不同介质中的生物活性和溶解行为

Q1 Materials Science
M. Arango-Ospina, L. Hupa, A. Boccaccini
{"title":"含硼生物活性玻璃在静态和动态条件下在不同介质中的生物活性和溶解行为","authors":"M. Arango-Ospina, L. Hupa, A. Boccaccini","doi":"10.1515/bglass-2019-0011","DOIUrl":null,"url":null,"abstract":"Abstract The present study reports the dissolution studies of a family of boron-doped bioactive glasses based on the composition ICIE16. Simulated body fluid (SBF), Tris-buffered solution and lactic acid were used as dissolution media for studies under static and dynamic conditions. The leaching of ions from the glasses under the evaluated conditions and media was compared and the bioactive behaviour of the glasses was evaluated. Influence of the incorporation of boron in the thermal properties of the glass was also analysed. Glasses exhibited faster bioactivity under dynamic dissolution configuration compared to static conditions. Moreover, the glass dissolution rate was faster in acidic conditions than in SBF or Tris solutions. It was found that at increasing boron content the dissolution of the glass is faster.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":"5 1","pages":"124 - 139"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0011","citationCount":"33","resultStr":"{\"title\":\"Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media\",\"authors\":\"M. Arango-Ospina, L. Hupa, A. Boccaccini\",\"doi\":\"10.1515/bglass-2019-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present study reports the dissolution studies of a family of boron-doped bioactive glasses based on the composition ICIE16. Simulated body fluid (SBF), Tris-buffered solution and lactic acid were used as dissolution media for studies under static and dynamic conditions. The leaching of ions from the glasses under the evaluated conditions and media was compared and the bioactive behaviour of the glasses was evaluated. Influence of the incorporation of boron in the thermal properties of the glass was also analysed. Glasses exhibited faster bioactivity under dynamic dissolution configuration compared to static conditions. Moreover, the glass dissolution rate was faster in acidic conditions than in SBF or Tris solutions. It was found that at increasing boron content the dissolution of the glass is faster.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":\"5 1\",\"pages\":\"124 - 139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2019-0011\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2019-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2019-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 33

摘要

摘要本研究报道了一类基于组合物ICIE16的硼掺杂生物活性玻璃的溶解研究。在静态和动态条件下,使用模拟体液(SBF)、Tris缓冲溶液和乳酸作为溶解介质进行研究。比较了在所评估的条件和介质下从玻璃中浸出离子的情况,并评估了玻璃的生物活性行为。还分析了硼的掺入对玻璃热性能的影响。与静态条件相比,玻璃在动态溶解配置下表现出更快的生物活性。此外,玻璃在酸性条件下的溶解速率比在SBF或Tris溶液中更快。研究发现,随着硼含量的增加,玻璃的溶解速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media
Abstract The present study reports the dissolution studies of a family of boron-doped bioactive glasses based on the composition ICIE16. Simulated body fluid (SBF), Tris-buffered solution and lactic acid were used as dissolution media for studies under static and dynamic conditions. The leaching of ions from the glasses under the evaluated conditions and media was compared and the bioactive behaviour of the glasses was evaluated. Influence of the incorporation of boron in the thermal properties of the glass was also analysed. Glasses exhibited faster bioactivity under dynamic dissolution configuration compared to static conditions. Moreover, the glass dissolution rate was faster in acidic conditions than in SBF or Tris solutions. It was found that at increasing boron content the dissolution of the glass is faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信