Minako Oda, Kousuke Fujibayashi, Minoru Wakasa, Shintaro Takano, W. Fujita, M. Kitayama, H. Nakanishi, Kazuyuki Saito, Yasuyuki Kawai, K. Kajinami
{"title":"非吸烟者血管痉挛性心绞痛患者血浆谷氨酸升高与血浆胱氨酸和抗氧化能力有关","authors":"Minako Oda, Kousuke Fujibayashi, Minoru Wakasa, Shintaro Takano, W. Fujita, M. Kitayama, H. Nakanishi, Kazuyuki Saito, Yasuyuki Kawai, K. Kajinami","doi":"10.1080/14017431.2022.2085884","DOIUrl":null,"url":null,"abstract":"Abstract Objectives. Endothelial dysfunction caused by oxidative stress plays an important role in the development of vasospastic angina pectoris (VSAP). Glutamate causes endothelial dysfunction by generating oxidative stress, and it inhibits cystine import into endothelial cells via the cystine/glutamate antiporter (XC –), which leads to depletion of antioxidant glutathione. However, whether glutamate and cystine are implicated in the pathogenesis of VSAP remains unclear. We investigated plasma glutamate and cystine levels, oxidative stress markers and antioxidant capacity in non-smoker patients with VSAP to determine whether glutamate and cystine are associated with the development of VSAP. We assessed 49 non-smokers assigned to groups with (n = 27) and without (n = 22) VSAP, and also measured plasma glutamate, cystine, nitrotyrosine, reactive oxygen metabolites and biological antioxidant potential. Results. Plasma glutamate and cystine values were significantly higher in the group with, than without VSAP (59.8 ± 25.7 vs. 43.5 ± 18.7 µmol/L, p = .016 and 35.3 ± 14.2 vs. 25.2 ± 9.1 µmol/L, p = .0056, respectively). Plasma glutamate and cystine values were significantly and positively associated (r = 0.32, p = .027). Levels of the oxidative stress markers nitrotyrosine and reactive oxygen metabolites, and biological antioxidant potential of as a measure of antioxidant capacity, did not significantly differ between the two groups. However, glutamate and biological antioxidant potential values were significantly and negatively associated (r = −0.3, p = .036). Conclusion. Plasma glutamate levels were increased in patients with VSAP who did not smoke, and they were positively associated with plasma cystine and negatively associated with the biological antioxidant potential levels.","PeriodicalId":21383,"journal":{"name":"Scandinavian Cardiovascular Journal","volume":"56 1","pages":"180 - 186"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Increased plasma glutamate in non-smokers with vasospastic angina pectoris is associated with plasma cystine and antioxidant capacity\",\"authors\":\"Minako Oda, Kousuke Fujibayashi, Minoru Wakasa, Shintaro Takano, W. Fujita, M. Kitayama, H. Nakanishi, Kazuyuki Saito, Yasuyuki Kawai, K. Kajinami\",\"doi\":\"10.1080/14017431.2022.2085884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives. Endothelial dysfunction caused by oxidative stress plays an important role in the development of vasospastic angina pectoris (VSAP). Glutamate causes endothelial dysfunction by generating oxidative stress, and it inhibits cystine import into endothelial cells via the cystine/glutamate antiporter (XC –), which leads to depletion of antioxidant glutathione. However, whether glutamate and cystine are implicated in the pathogenesis of VSAP remains unclear. We investigated plasma glutamate and cystine levels, oxidative stress markers and antioxidant capacity in non-smoker patients with VSAP to determine whether glutamate and cystine are associated with the development of VSAP. We assessed 49 non-smokers assigned to groups with (n = 27) and without (n = 22) VSAP, and also measured plasma glutamate, cystine, nitrotyrosine, reactive oxygen metabolites and biological antioxidant potential. Results. Plasma glutamate and cystine values were significantly higher in the group with, than without VSAP (59.8 ± 25.7 vs. 43.5 ± 18.7 µmol/L, p = .016 and 35.3 ± 14.2 vs. 25.2 ± 9.1 µmol/L, p = .0056, respectively). Plasma glutamate and cystine values were significantly and positively associated (r = 0.32, p = .027). Levels of the oxidative stress markers nitrotyrosine and reactive oxygen metabolites, and biological antioxidant potential of as a measure of antioxidant capacity, did not significantly differ between the two groups. However, glutamate and biological antioxidant potential values were significantly and negatively associated (r = −0.3, p = .036). Conclusion. Plasma glutamate levels were increased in patients with VSAP who did not smoke, and they were positively associated with plasma cystine and negatively associated with the biological antioxidant potential levels.\",\"PeriodicalId\":21383,\"journal\":{\"name\":\"Scandinavian Cardiovascular Journal\",\"volume\":\"56 1\",\"pages\":\"180 - 186\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Cardiovascular Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14017431.2022.2085884\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Cardiovascular Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14017431.2022.2085884","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Increased plasma glutamate in non-smokers with vasospastic angina pectoris is associated with plasma cystine and antioxidant capacity
Abstract Objectives. Endothelial dysfunction caused by oxidative stress plays an important role in the development of vasospastic angina pectoris (VSAP). Glutamate causes endothelial dysfunction by generating oxidative stress, and it inhibits cystine import into endothelial cells via the cystine/glutamate antiporter (XC –), which leads to depletion of antioxidant glutathione. However, whether glutamate and cystine are implicated in the pathogenesis of VSAP remains unclear. We investigated plasma glutamate and cystine levels, oxidative stress markers and antioxidant capacity in non-smoker patients with VSAP to determine whether glutamate and cystine are associated with the development of VSAP. We assessed 49 non-smokers assigned to groups with (n = 27) and without (n = 22) VSAP, and also measured plasma glutamate, cystine, nitrotyrosine, reactive oxygen metabolites and biological antioxidant potential. Results. Plasma glutamate and cystine values were significantly higher in the group with, than without VSAP (59.8 ± 25.7 vs. 43.5 ± 18.7 µmol/L, p = .016 and 35.3 ± 14.2 vs. 25.2 ± 9.1 µmol/L, p = .0056, respectively). Plasma glutamate and cystine values were significantly and positively associated (r = 0.32, p = .027). Levels of the oxidative stress markers nitrotyrosine and reactive oxygen metabolites, and biological antioxidant potential of as a measure of antioxidant capacity, did not significantly differ between the two groups. However, glutamate and biological antioxidant potential values were significantly and negatively associated (r = −0.3, p = .036). Conclusion. Plasma glutamate levels were increased in patients with VSAP who did not smoke, and they were positively associated with plasma cystine and negatively associated with the biological antioxidant potential levels.
期刊介绍:
The principal aim of Scandinavian Cardiovascular Journal is to promote cardiovascular research that crosses the borders between disciplines. The journal is a forum for the entire field of cardiovascular research, basic and clinical including:
• Cardiology - Interventional and non-invasive
• Cardiovascular epidemiology
• Cardiovascular anaesthesia and intensive care
• Cardiovascular surgery
• Cardiovascular radiology
• Clinical physiology
• Transplantation of thoracic organs