二元三角拟阵的过渡多项式权系统

Alexander Dunaykin, V. Zhukov
{"title":"二元三角拟阵的过渡多项式权系统","authors":"Alexander Dunaykin, V. Zhukov","doi":"10.17323/1609-4514-2022-22-1-69-81","DOIUrl":null,"url":null,"abstract":"To a singular knot K with n double points, one can associate a chord diagram with n chords. A chord diagram can also be understood as a 4-regular graph endowed with an oriented Euler circuit. For a given 4-regular graph, we can build a transition polynomial. We specialize this polynomial to a multiplicative weight system, that is, a function on chord diagrams satisfying 4-term relations and determining thus a knot invariant. We extend our function to ribbon graphs and further to binary delta-matroids and show that 4-term relations are satisfied for it.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Transition Polynomial as a Weight System for Binary Delta-Matroids\",\"authors\":\"Alexander Dunaykin, V. Zhukov\",\"doi\":\"10.17323/1609-4514-2022-22-1-69-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To a singular knot K with n double points, one can associate a chord diagram with n chords. A chord diagram can also be understood as a 4-regular graph endowed with an oriented Euler circuit. For a given 4-regular graph, we can build a transition polynomial. We specialize this polynomial to a multiplicative weight system, that is, a function on chord diagrams satisfying 4-term relations and determining thus a knot invariant. We extend our function to ribbon graphs and further to binary delta-matroids and show that 4-term relations are satisfied for it.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2022-22-1-69-81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2022-22-1-69-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于具有n个双点的奇异结K,可以将弦图与n个和弦相关联。弦图也可以理解为具有定向欧拉回路的4-正则图。对于给定的4-正则图,我们可以建立一个转移多项式。我们将这个多项式专门化为乘法权重系统,即弦图上满足四项关系的函数,从而确定结不变量。我们将我们的函数推广到带状图,并进一步推广到二元delta拟阵,并证明了它满足四项关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Transition Polynomial as a Weight System for Binary Delta-Matroids
To a singular knot K with n double points, one can associate a chord diagram with n chords. A chord diagram can also be understood as a 4-regular graph endowed with an oriented Euler circuit. For a given 4-regular graph, we can build a transition polynomial. We specialize this polynomial to a multiplicative weight system, that is, a function on chord diagrams satisfying 4-term relations and determining thus a knot invariant. We extend our function to ribbon graphs and further to binary delta-matroids and show that 4-term relations are satisfied for it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信