{"title":"二元三角拟阵的过渡多项式权系统","authors":"Alexander Dunaykin, V. Zhukov","doi":"10.17323/1609-4514-2022-22-1-69-81","DOIUrl":null,"url":null,"abstract":"To a singular knot K with n double points, one can associate a chord diagram with n chords. A chord diagram can also be understood as a 4-regular graph endowed with an oriented Euler circuit. For a given 4-regular graph, we can build a transition polynomial. We specialize this polynomial to a multiplicative weight system, that is, a function on chord diagrams satisfying 4-term relations and determining thus a knot invariant. We extend our function to ribbon graphs and further to binary delta-matroids and show that 4-term relations are satisfied for it.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Transition Polynomial as a Weight System for Binary Delta-Matroids\",\"authors\":\"Alexander Dunaykin, V. Zhukov\",\"doi\":\"10.17323/1609-4514-2022-22-1-69-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To a singular knot K with n double points, one can associate a chord diagram with n chords. A chord diagram can also be understood as a 4-regular graph endowed with an oriented Euler circuit. For a given 4-regular graph, we can build a transition polynomial. We specialize this polynomial to a multiplicative weight system, that is, a function on chord diagrams satisfying 4-term relations and determining thus a knot invariant. We extend our function to ribbon graphs and further to binary delta-matroids and show that 4-term relations are satisfied for it.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2022-22-1-69-81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2022-22-1-69-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transition Polynomial as a Weight System for Binary Delta-Matroids
To a singular knot K with n double points, one can associate a chord diagram with n chords. A chord diagram can also be understood as a 4-regular graph endowed with an oriented Euler circuit. For a given 4-regular graph, we can build a transition polynomial. We specialize this polynomial to a multiplicative weight system, that is, a function on chord diagrams satisfying 4-term relations and determining thus a knot invariant. We extend our function to ribbon graphs and further to binary delta-matroids and show that 4-term relations are satisfied for it.