Maurício Bruno Prado da Silva, Valter Cesar de Souza, Caroline Pires Cremasco, Marcus Vinícius Contes Calça, Cícero Manoel dos Santos, C. Cremasco, L. R. A. Gabriel Filho, Sérgio Augusto Rodrigues, J. F. Escobedo
{"title":"机器学习模型在sao保罗西部高原参考蒸散估算中的应用","authors":"Maurício Bruno Prado da Silva, Valter Cesar de Souza, Caroline Pires Cremasco, Marcus Vinícius Contes Calça, Cícero Manoel dos Santos, C. Cremasco, L. R. A. Gabriel Filho, Sérgio Augusto Rodrigues, J. F. Escobedo","doi":"10.31413/nativa.v10i4.13922","DOIUrl":null,"url":null,"abstract":"A evapotranspiração depende da interação entre variáveis meteorológicas (radiação solar, temperatura do ar, precipitação, umidade relativa do ar e velocidade do vento) e condições fitossanitárias das culturas agrícolas. É complexo construir medidas confiáveis de evapotranspiração devido aos elevados custos para implantação de técnicas micrometeorológicas, além de dificuldades na operação e manutenção dos equipamentos necessários. O propósito desta pesquisa foi modelar a evapotranspiração de referência (ETo) por meio de técnicas de machine learning em dados climáticos de 30 estações meteorológicas automáticas do Planalto Ocidental Paulista, Estado de São Paulo, Brasil, no período de 2013-2017. Uma comparação do desempenho estatístico entre as técnicas utilizadas foi realizada onde constatou-se melhor desempenho do modelo EToMLP4 (rRMSE = 0.62%), seguido por EToANFIS4 (rRMSE = 0.75%), EToSVM4 (rRMSE = 1.19%) e EToGRNN4 (rRMSE = 11.05%). Medidas de performance da base de validação evidenciam que os modelos propostos são aptos à estimativa da evapotranspiração de referência com destaque para a técnica MPL.\nPalavras-chave: evapotranspiração; modelagem matemática; aprendizagem de máquina.\n \nMachine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista\n \nABSTRACT: Evapotranspiration depends on the interaction between meteorological variables (solar radiation, air temperature, precipitation, relative humidity and wind speed) and phytosanitary conditions of agricultural crops. It is complex to build reliable evapotranspiration measurements due to the high costs of implementing micrometeorological techniques, in addition to difficulties in the operation and maintenance of the necessary equipment. The purpose of this research was to model the reference evapotranspiration through machine learning techniques in climatic data from 30 automatic weather stations in the Planalto Ocidental Paulista, State of São Paulo, Brazil, in the period 2013-2017. A comparison of the statistical performance between the techniques used was carried out, where the best performance of the EToMLP4 model (rRMSE = 0.62%), followed by EToANFIS4 (rRMSE = 0.75%), EToSVM4 (rRMSE = 1.19%) and EToGRNN4 (rRMSE = 11.05 %). Performance measures of the validation base show that the proposed models are able to estimate the reference evapotranspiration, with emphasis on the MPL technique.\nKeywords: evapotranspiration; modeling; machine learning.","PeriodicalId":44324,"journal":{"name":"Nativa","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELOS DE MACHINE LEARNING APLICADOS NA ESTIMAÇÃO DA EVAPOTRANSPIRAÇÃO DE REFERÊNCIA DO PLANALTO OCIDENTAL PAULISTA\",\"authors\":\"Maurício Bruno Prado da Silva, Valter Cesar de Souza, Caroline Pires Cremasco, Marcus Vinícius Contes Calça, Cícero Manoel dos Santos, C. Cremasco, L. R. A. Gabriel Filho, Sérgio Augusto Rodrigues, J. F. Escobedo\",\"doi\":\"10.31413/nativa.v10i4.13922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A evapotranspiração depende da interação entre variáveis meteorológicas (radiação solar, temperatura do ar, precipitação, umidade relativa do ar e velocidade do vento) e condições fitossanitárias das culturas agrícolas. É complexo construir medidas confiáveis de evapotranspiração devido aos elevados custos para implantação de técnicas micrometeorológicas, além de dificuldades na operação e manutenção dos equipamentos necessários. O propósito desta pesquisa foi modelar a evapotranspiração de referência (ETo) por meio de técnicas de machine learning em dados climáticos de 30 estações meteorológicas automáticas do Planalto Ocidental Paulista, Estado de São Paulo, Brasil, no período de 2013-2017. Uma comparação do desempenho estatístico entre as técnicas utilizadas foi realizada onde constatou-se melhor desempenho do modelo EToMLP4 (rRMSE = 0.62%), seguido por EToANFIS4 (rRMSE = 0.75%), EToSVM4 (rRMSE = 1.19%) e EToGRNN4 (rRMSE = 11.05%). Medidas de performance da base de validação evidenciam que os modelos propostos são aptos à estimativa da evapotranspiração de referência com destaque para a técnica MPL.\\nPalavras-chave: evapotranspiração; modelagem matemática; aprendizagem de máquina.\\n \\nMachine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista\\n \\nABSTRACT: Evapotranspiration depends on the interaction between meteorological variables (solar radiation, air temperature, precipitation, relative humidity and wind speed) and phytosanitary conditions of agricultural crops. It is complex to build reliable evapotranspiration measurements due to the high costs of implementing micrometeorological techniques, in addition to difficulties in the operation and maintenance of the necessary equipment. The purpose of this research was to model the reference evapotranspiration through machine learning techniques in climatic data from 30 automatic weather stations in the Planalto Ocidental Paulista, State of São Paulo, Brazil, in the period 2013-2017. A comparison of the statistical performance between the techniques used was carried out, where the best performance of the EToMLP4 model (rRMSE = 0.62%), followed by EToANFIS4 (rRMSE = 0.75%), EToSVM4 (rRMSE = 1.19%) and EToGRNN4 (rRMSE = 11.05 %). Performance measures of the validation base show that the proposed models are able to estimate the reference evapotranspiration, with emphasis on the MPL technique.\\nKeywords: evapotranspiration; modeling; machine learning.\",\"PeriodicalId\":44324,\"journal\":{\"name\":\"Nativa\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nativa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31413/nativa.v10i4.13922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nativa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31413/nativa.v10i4.13922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
MODELOS DE MACHINE LEARNING APLICADOS NA ESTIMAÇÃO DA EVAPOTRANSPIRAÇÃO DE REFERÊNCIA DO PLANALTO OCIDENTAL PAULISTA
A evapotranspiração depende da interação entre variáveis meteorológicas (radiação solar, temperatura do ar, precipitação, umidade relativa do ar e velocidade do vento) e condições fitossanitárias das culturas agrícolas. É complexo construir medidas confiáveis de evapotranspiração devido aos elevados custos para implantação de técnicas micrometeorológicas, além de dificuldades na operação e manutenção dos equipamentos necessários. O propósito desta pesquisa foi modelar a evapotranspiração de referência (ETo) por meio de técnicas de machine learning em dados climáticos de 30 estações meteorológicas automáticas do Planalto Ocidental Paulista, Estado de São Paulo, Brasil, no período de 2013-2017. Uma comparação do desempenho estatístico entre as técnicas utilizadas foi realizada onde constatou-se melhor desempenho do modelo EToMLP4 (rRMSE = 0.62%), seguido por EToANFIS4 (rRMSE = 0.75%), EToSVM4 (rRMSE = 1.19%) e EToGRNN4 (rRMSE = 11.05%). Medidas de performance da base de validação evidenciam que os modelos propostos são aptos à estimativa da evapotranspiração de referência com destaque para a técnica MPL.
Palavras-chave: evapotranspiração; modelagem matemática; aprendizagem de máquina.
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista
ABSTRACT: Evapotranspiration depends on the interaction between meteorological variables (solar radiation, air temperature, precipitation, relative humidity and wind speed) and phytosanitary conditions of agricultural crops. It is complex to build reliable evapotranspiration measurements due to the high costs of implementing micrometeorological techniques, in addition to difficulties in the operation and maintenance of the necessary equipment. The purpose of this research was to model the reference evapotranspiration through machine learning techniques in climatic data from 30 automatic weather stations in the Planalto Ocidental Paulista, State of São Paulo, Brazil, in the period 2013-2017. A comparison of the statistical performance between the techniques used was carried out, where the best performance of the EToMLP4 model (rRMSE = 0.62%), followed by EToANFIS4 (rRMSE = 0.75%), EToSVM4 (rRMSE = 1.19%) and EToGRNN4 (rRMSE = 11.05 %). Performance measures of the validation base show that the proposed models are able to estimate the reference evapotranspiration, with emphasis on the MPL technique.
Keywords: evapotranspiration; modeling; machine learning.