风热对微型高速转子-定子腔的影响

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE
Jianyu Liu , Guoqiang Xu , Xi Zhao , Bensi Dong , Yongkai Quan
{"title":"风热对微型高速转子-定子腔的影响","authors":"Jianyu Liu ,&nbsp;Guoqiang Xu ,&nbsp;Xi Zhao ,&nbsp;Bensi Dong ,&nbsp;Yongkai Quan","doi":"10.1016/j.jppr.2022.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>The main objective of this work is to investigate the effect of windage heating on the micro high-speed rotor-stator cavity. The influences of centrifugal force and spacing on the windage heating are analyzed with and without the change of gap ratio respectively. The results demonstrate that there is no difference in the flow structure between micro and large-scale rotor-stator cavities at the same rotational Reynolds number and gap ratio. However, the windage heating induced by the larger centrifugal force and smaller spacing brings the different heat transfer laws for the micro rotor-stator cavity. The larger centrifugal force weakens the local heat transfer near the rotor periphery. Such influence can be strengthened at higher rotational Reynolds numbers and lower rotor excess temperatures. Besides, the smaller spacing further enhances the windage heating and reduces the average heat transfer especially under the condition of lower gap ratio. The findings of this work contribute to the design of rotor-stator cavity utilized in the micro rotating machinery.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"11 4","pages":"Pages 496-510"},"PeriodicalIF":5.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212540X22000578/pdfft?md5=d30590b3a0337c1b5f77a55521dd9436&pid=1-s2.0-S2212540X22000578-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of windage heating on a micro high-speed rotor-stator cavity\",\"authors\":\"Jianyu Liu ,&nbsp;Guoqiang Xu ,&nbsp;Xi Zhao ,&nbsp;Bensi Dong ,&nbsp;Yongkai Quan\",\"doi\":\"10.1016/j.jppr.2022.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main objective of this work is to investigate the effect of windage heating on the micro high-speed rotor-stator cavity. The influences of centrifugal force and spacing on the windage heating are analyzed with and without the change of gap ratio respectively. The results demonstrate that there is no difference in the flow structure between micro and large-scale rotor-stator cavities at the same rotational Reynolds number and gap ratio. However, the windage heating induced by the larger centrifugal force and smaller spacing brings the different heat transfer laws for the micro rotor-stator cavity. The larger centrifugal force weakens the local heat transfer near the rotor periphery. Such influence can be strengthened at higher rotational Reynolds numbers and lower rotor excess temperatures. Besides, the smaller spacing further enhances the windage heating and reduces the average heat transfer especially under the condition of lower gap ratio. The findings of this work contribute to the design of rotor-stator cavity utilized in the micro rotating machinery.</p></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"11 4\",\"pages\":\"Pages 496-510\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212540X22000578/pdfft?md5=d30590b3a0337c1b5f77a55521dd9436&pid=1-s2.0-S2212540X22000578-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X22000578\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X22000578","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究风热对微高速转子-定子空腔的影响。分析了在间隙比改变和不改变时,离心力和间距对风热的影响。结果表明,在相同的转动雷诺数和间隙比下,微型和大型动静腔之间的流动结构没有差异。然而,较大的离心力和较小的间距所引起的间隙加热导致微动静腔的传热规律不同。较大的离心力削弱了转子外围附近的局部换热。在较高的旋转雷诺数和较低的转子过热温度下,这种影响会加强。此外,更小的间隙进一步增强了风热,降低了平均换热,特别是在间隙比较低的情况下。研究结果对微旋转机械中动静腔的设计有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of windage heating on a micro high-speed rotor-stator cavity

The main objective of this work is to investigate the effect of windage heating on the micro high-speed rotor-stator cavity. The influences of centrifugal force and spacing on the windage heating are analyzed with and without the change of gap ratio respectively. The results demonstrate that there is no difference in the flow structure between micro and large-scale rotor-stator cavities at the same rotational Reynolds number and gap ratio. However, the windage heating induced by the larger centrifugal force and smaller spacing brings the different heat transfer laws for the micro rotor-stator cavity. The larger centrifugal force weakens the local heat transfer near the rotor periphery. Such influence can be strengthened at higher rotational Reynolds numbers and lower rotor excess temperatures. Besides, the smaller spacing further enhances the windage heating and reduces the average heat transfer especially under the condition of lower gap ratio. The findings of this work contribute to the design of rotor-stator cavity utilized in the micro rotating machinery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信