亚洲贫民窟的排放如何影响污染气团中的当地小气候

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Satyajit Ghosh, C. R. Sathish Kumar, Siddharth Gumber, Steven Dobbie, Huiyi Yang
{"title":"亚洲贫民窟的排放如何影响污染气团中的当地小气候","authors":"Satyajit Ghosh, C. R. Sathish Kumar, Siddharth Gumber, Steven Dobbie, Huiyi Yang","doi":"10.1002/asl.1124","DOIUrl":null,"url":null,"abstract":"Urban sprawl comprising densely populated slums over South Asian cities yields copious amounts of soot and black carbon from archaic cooking methods involving cow dung cakes and firewood, which remain afloat for over 10–12 h, enabling them to age in a sulphur rich environment. Not only are there toxicological concerns arising out of improper ventilation mechanisms, but there are also other concerns impacting the local microclimate. These emissions mix with other aerosol particles and, when conditions are favourable, are rendered partially soluble, enabling them to activate into cloud condensation nuclei. This study first yields a quantification of the soluble mass fraction and subsequently shows how aerosols from this local area source mix with background aerosol modes to perturb the local cloud microphysics over Chennai, a megacity in Southern India. On‐site sampling was undertaken to find the mass concentrations of the collected deposits separately from cow dung and firewood fuel. Additional micro‐physical attributes, including the morphological indentations that served as a receptacle to contain the accreted sulphate along with the particle size distribution were ascertained through Scanning Electron Microscopy. It is shown that accreted sulphate on carbonaceous particles facilitates CCN activation over the city. We show through large‐eddy simulations (LES) that extensive slum emissions over the study region contribute to the observed local cloud cover and enhanced rain amounts over a densely built‐up area housing the city's most vulnerable citizens.","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"23 12","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1124","citationCount":"0","resultStr":"{\"title\":\"How Asian slum emissions impact local microclimates in polluted air masses\",\"authors\":\"Satyajit Ghosh, C. R. Sathish Kumar, Siddharth Gumber, Steven Dobbie, Huiyi Yang\",\"doi\":\"10.1002/asl.1124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban sprawl comprising densely populated slums over South Asian cities yields copious amounts of soot and black carbon from archaic cooking methods involving cow dung cakes and firewood, which remain afloat for over 10–12 h, enabling them to age in a sulphur rich environment. Not only are there toxicological concerns arising out of improper ventilation mechanisms, but there are also other concerns impacting the local microclimate. These emissions mix with other aerosol particles and, when conditions are favourable, are rendered partially soluble, enabling them to activate into cloud condensation nuclei. This study first yields a quantification of the soluble mass fraction and subsequently shows how aerosols from this local area source mix with background aerosol modes to perturb the local cloud microphysics over Chennai, a megacity in Southern India. On‐site sampling was undertaken to find the mass concentrations of the collected deposits separately from cow dung and firewood fuel. Additional micro‐physical attributes, including the morphological indentations that served as a receptacle to contain the accreted sulphate along with the particle size distribution were ascertained through Scanning Electron Microscopy. It is shown that accreted sulphate on carbonaceous particles facilitates CCN activation over the city. We show through large‐eddy simulations (LES) that extensive slum emissions over the study region contribute to the observed local cloud cover and enhanced rain amounts over a densely built‐up area housing the city's most vulnerable citizens.\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":\"23 12\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1124\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1124\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1124","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

南亚城市由人口稠密的贫民窟组成的城市蔓延,从牛粪饼和木柴等古老的烹饪方法中产生了大量的烟尘和黑碳,这些烹饪方法可以维持10-12年 h、 使它们能够在富含硫的环境中老化。不适当的通风机制不仅会引起毒理学问题,而且还会影响当地的小气候。这些排放物与其他气溶胶颗粒混合,在条件有利的情况下,使其部分溶解,使其能够活化成云凝结核。这项研究首先对可溶性质量分数进行了量化,随后展示了来自该局部区域来源的气溶胶如何与背景气溶胶模式混合,扰乱印度南部特大城市钦奈上空的局部云微物理。进行了现场采样,以发现与牛粪和木柴燃料分开收集的沉积物的质量浓度。通过扫描电子显微镜确定了额外的微观物理属性,包括用作容纳附着硫酸盐的容器的形态压痕以及粒度分布。研究表明,碳质颗粒上附着的硫酸盐促进了城市上空CCN的活化。我们通过大涡模拟(LES)表明,研究区域的大量贫民窟排放导致了观测到的当地云层覆盖,并增加了城市最脆弱公民居住的密集地区的降雨量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

How Asian slum emissions impact local microclimates in polluted air masses

How Asian slum emissions impact local microclimates in polluted air masses
Urban sprawl comprising densely populated slums over South Asian cities yields copious amounts of soot and black carbon from archaic cooking methods involving cow dung cakes and firewood, which remain afloat for over 10–12 h, enabling them to age in a sulphur rich environment. Not only are there toxicological concerns arising out of improper ventilation mechanisms, but there are also other concerns impacting the local microclimate. These emissions mix with other aerosol particles and, when conditions are favourable, are rendered partially soluble, enabling them to activate into cloud condensation nuclei. This study first yields a quantification of the soluble mass fraction and subsequently shows how aerosols from this local area source mix with background aerosol modes to perturb the local cloud microphysics over Chennai, a megacity in Southern India. On‐site sampling was undertaken to find the mass concentrations of the collected deposits separately from cow dung and firewood fuel. Additional micro‐physical attributes, including the morphological indentations that served as a receptacle to contain the accreted sulphate along with the particle size distribution were ascertained through Scanning Electron Microscopy. It is shown that accreted sulphate on carbonaceous particles facilitates CCN activation over the city. We show through large‐eddy simulations (LES) that extensive slum emissions over the study region contribute to the observed local cloud cover and enhanced rain amounts over a densely built‐up area housing the city's most vulnerable citizens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信