零排放快速近海航运的实现与斯塔万格示范船的设计

IF 0.5 4区 工程技术 Q4 ENGINEERING, MARINE
E. Boulougouris, A. Papanikolaou, Mikal Dahle, E. Tolo, Y. Xing-Kaeding, C. Jürgenhake, T. Seidenberg, C. Sachs, Craig Brown, F. Jenset
{"title":"零排放快速近海航运的实现与斯塔万格示范船的设计","authors":"E. Boulougouris, A. Papanikolaou, Mikal Dahle, E. Tolo, Y. Xing-Kaeding, C. Jürgenhake, T. Seidenberg, C. Sachs, Craig Brown, F. Jenset","doi":"10.5957/jspd.03220011","DOIUrl":null,"url":null,"abstract":"\n \n The paper describes the implementation of state-of-the-art “Industry 4.0” methods and tools, of a holistic ship design optimization and of modular production methods, as well as of advanced battery technologies in the development of an innovative, fully electrical, fast zero-emission catamaran for waterborne urban transport. The design of a fast catamaran passenger ferry prototype (Medstraum), planned for operation as a waterborne shuttle in the Stavanger/Norway area, and of a replicator for operation at the Thames River/London are elaborated, including on land infrastructural issues that are necessary for their operation. The presented research is in the frame of the H2020 funded project “TrAM—Transport: Advanced andModular” (www.tramproject.eu).\n \n \n \n The international maritime community is amassing momentum in its efforts towards a drastic reduction of greenhouse gas (GHG) emissions. This is expected to be further accelerated after the upcoming COP261 (COP26: UN Climate Change Conference of Parties) in Glasgow in autumn 2021. The maritime industry is examining alternative ways to contribute actively to this endeavor, despite the additional challenges posed by the COVID-19 pandemic.\n","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Zero Emission Fast Shortsea Shipping and Design of the Stavanger Demonstrator\",\"authors\":\"E. Boulougouris, A. Papanikolaou, Mikal Dahle, E. Tolo, Y. Xing-Kaeding, C. Jürgenhake, T. Seidenberg, C. Sachs, Craig Brown, F. Jenset\",\"doi\":\"10.5957/jspd.03220011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The paper describes the implementation of state-of-the-art “Industry 4.0” methods and tools, of a holistic ship design optimization and of modular production methods, as well as of advanced battery technologies in the development of an innovative, fully electrical, fast zero-emission catamaran for waterborne urban transport. The design of a fast catamaran passenger ferry prototype (Medstraum), planned for operation as a waterborne shuttle in the Stavanger/Norway area, and of a replicator for operation at the Thames River/London are elaborated, including on land infrastructural issues that are necessary for their operation. The presented research is in the frame of the H2020 funded project “TrAM—Transport: Advanced andModular” (www.tramproject.eu).\\n \\n \\n \\n The international maritime community is amassing momentum in its efforts towards a drastic reduction of greenhouse gas (GHG) emissions. This is expected to be further accelerated after the upcoming COP261 (COP26: UN Climate Change Conference of Parties) in Glasgow in autumn 2021. The maritime industry is examining alternative ways to contribute actively to this endeavor, despite the additional challenges posed by the COVID-19 pandemic.\\n\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/jspd.03220011\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/jspd.03220011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了最先进的“工业4.0”方法和工具的实施,整体船舶设计优化和模块化生产方法,以及先进的电池技术,用于开发用于水上城市交通的创新、全电动、快速零排放双体船。详细阐述了一艘快速双体船客运渡轮原型(Medstraum)的设计,该原型计划在斯塔万格/挪威地区作为水上穿梭机运行,以及一艘在泰晤士河/伦敦运行的复制器的设计,包括其运行所需的陆上基础设施问题。所介绍的研究是在H2020资助的项目“TrAM——运输:先进和模块化”(www.bumproject.eu)的框架内进行的。国际海事界正在大力减少温室气体排放。预计在2021年秋季即将在格拉斯哥举行的COP261(COP26:联合国气候变化缔约方大会)之后,这一进程将进一步加快。尽管新冠肺炎疫情带来了额外的挑战,但海运业正在研究积极为这一努力做出贡献的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Zero Emission Fast Shortsea Shipping and Design of the Stavanger Demonstrator
The paper describes the implementation of state-of-the-art “Industry 4.0” methods and tools, of a holistic ship design optimization and of modular production methods, as well as of advanced battery technologies in the development of an innovative, fully electrical, fast zero-emission catamaran for waterborne urban transport. The design of a fast catamaran passenger ferry prototype (Medstraum), planned for operation as a waterborne shuttle in the Stavanger/Norway area, and of a replicator for operation at the Thames River/London are elaborated, including on land infrastructural issues that are necessary for their operation. The presented research is in the frame of the H2020 funded project “TrAM—Transport: Advanced andModular” (www.tramproject.eu). The international maritime community is amassing momentum in its efforts towards a drastic reduction of greenhouse gas (GHG) emissions. This is expected to be further accelerated after the upcoming COP261 (COP26: UN Climate Change Conference of Parties) in Glasgow in autumn 2021. The maritime industry is examining alternative ways to contribute actively to this endeavor, despite the additional challenges posed by the COVID-19 pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信