E. Boulougouris, A. Papanikolaou, Mikal Dahle, E. Tolo, Y. Xing-Kaeding, C. Jürgenhake, T. Seidenberg, C. Sachs, Craig Brown, F. Jenset
{"title":"零排放快速近海航运的实现与斯塔万格示范船的设计","authors":"E. Boulougouris, A. Papanikolaou, Mikal Dahle, E. Tolo, Y. Xing-Kaeding, C. Jürgenhake, T. Seidenberg, C. Sachs, Craig Brown, F. Jenset","doi":"10.5957/jspd.03220011","DOIUrl":null,"url":null,"abstract":"\n \n The paper describes the implementation of state-of-the-art “Industry 4.0” methods and tools, of a holistic ship design optimization and of modular production methods, as well as of advanced battery technologies in the development of an innovative, fully electrical, fast zero-emission catamaran for waterborne urban transport. The design of a fast catamaran passenger ferry prototype (Medstraum), planned for operation as a waterborne shuttle in the Stavanger/Norway area, and of a replicator for operation at the Thames River/London are elaborated, including on land infrastructural issues that are necessary for their operation. The presented research is in the frame of the H2020 funded project “TrAM—Transport: Advanced andModular” (www.tramproject.eu).\n \n \n \n The international maritime community is amassing momentum in its efforts towards a drastic reduction of greenhouse gas (GHG) emissions. This is expected to be further accelerated after the upcoming COP261 (COP26: UN Climate Change Conference of Parties) in Glasgow in autumn 2021. The maritime industry is examining alternative ways to contribute actively to this endeavor, despite the additional challenges posed by the COVID-19 pandemic.\n","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Zero Emission Fast Shortsea Shipping and Design of the Stavanger Demonstrator\",\"authors\":\"E. Boulougouris, A. Papanikolaou, Mikal Dahle, E. Tolo, Y. Xing-Kaeding, C. Jürgenhake, T. Seidenberg, C. Sachs, Craig Brown, F. Jenset\",\"doi\":\"10.5957/jspd.03220011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The paper describes the implementation of state-of-the-art “Industry 4.0” methods and tools, of a holistic ship design optimization and of modular production methods, as well as of advanced battery technologies in the development of an innovative, fully electrical, fast zero-emission catamaran for waterborne urban transport. The design of a fast catamaran passenger ferry prototype (Medstraum), planned for operation as a waterborne shuttle in the Stavanger/Norway area, and of a replicator for operation at the Thames River/London are elaborated, including on land infrastructural issues that are necessary for their operation. The presented research is in the frame of the H2020 funded project “TrAM—Transport: Advanced andModular” (www.tramproject.eu).\\n \\n \\n \\n The international maritime community is amassing momentum in its efforts towards a drastic reduction of greenhouse gas (GHG) emissions. This is expected to be further accelerated after the upcoming COP261 (COP26: UN Climate Change Conference of Parties) in Glasgow in autumn 2021. The maritime industry is examining alternative ways to contribute actively to this endeavor, despite the additional challenges posed by the COVID-19 pandemic.\\n\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/jspd.03220011\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/jspd.03220011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Implementation of Zero Emission Fast Shortsea Shipping and Design of the Stavanger Demonstrator
The paper describes the implementation of state-of-the-art “Industry 4.0” methods and tools, of a holistic ship design optimization and of modular production methods, as well as of advanced battery technologies in the development of an innovative, fully electrical, fast zero-emission catamaran for waterborne urban transport. The design of a fast catamaran passenger ferry prototype (Medstraum), planned for operation as a waterborne shuttle in the Stavanger/Norway area, and of a replicator for operation at the Thames River/London are elaborated, including on land infrastructural issues that are necessary for their operation. The presented research is in the frame of the H2020 funded project “TrAM—Transport: Advanced andModular” (www.tramproject.eu).
The international maritime community is amassing momentum in its efforts towards a drastic reduction of greenhouse gas (GHG) emissions. This is expected to be further accelerated after the upcoming COP261 (COP26: UN Climate Change Conference of Parties) in Glasgow in autumn 2021. The maritime industry is examining alternative ways to contribute actively to this endeavor, despite the additional challenges posed by the COVID-19 pandemic.
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.