有纤维结的精梳属和复杂性

Pub Date : 2022-11-08 DOI:10.1112/topo.12268
Mustafa Cengiz
{"title":"有纤维结的精梳属和复杂性","authors":"Mustafa Cengiz","doi":"10.1112/topo.12268","DOIUrl":null,"url":null,"abstract":"<p>We prove that if a fibered knot <math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> with genus greater than 1 in a three-manifold <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> has a sufficiently complicated monodromy, then <math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> induces a minimal genus Heegaard splitting <math>\n <semantics>\n <mi>P</mi>\n <annotation>$P$</annotation>\n </semantics></math> that is unique up to isotopy, and small genus Heegaard splittings of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> are stabilizations of <math>\n <semantics>\n <mi>P</mi>\n <annotation>$P$</annotation>\n </semantics></math>. We provide a complexity bound in terms of the Heegaard genus of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>. We also provide global complexity bounds for fibered knots in the three-sphere and lens spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heegaard genus and complexity of fibered knots\",\"authors\":\"Mustafa Cengiz\",\"doi\":\"10.1112/topo.12268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that if a fibered knot <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> with genus greater than 1 in a three-manifold <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> has a sufficiently complicated monodromy, then <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> induces a minimal genus Heegaard splitting <math>\\n <semantics>\\n <mi>P</mi>\\n <annotation>$P$</annotation>\\n </semantics></math> that is unique up to isotopy, and small genus Heegaard splittings of <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> are stabilizations of <math>\\n <semantics>\\n <mi>P</mi>\\n <annotation>$P$</annotation>\\n </semantics></math>. We provide a complexity bound in terms of the Heegaard genus of <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math>. We also provide global complexity bounds for fibered knots in the three-sphere and lens spaces.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在三流形M$ M$中,如果一个格值大于1的纤维结K$ K$有一个足够复杂的一元,那么K$ K$就会引出一个最小格值heegard分裂P$ P$,该分裂P$ P$在同位素上是唯一的。M$ M$的小属heegard分裂是P$ P$的稳定化。我们给出了M$ M$的Heegaard格的复杂度界。我们还提供了三球面和透镜空间中纤维结的全局复杂性界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Heegaard genus and complexity of fibered knots

We prove that if a fibered knot K $K$ with genus greater than 1 in a three-manifold M $M$ has a sufficiently complicated monodromy, then K $K$ induces a minimal genus Heegaard splitting P $P$ that is unique up to isotopy, and small genus Heegaard splittings of M $M$ are stabilizations of P $P$ . We provide a complexity bound in terms of the Heegaard genus of M $M$ . We also provide global complexity bounds for fibered knots in the three-sphere and lens spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信