H. Zhang, Wei Sun, Shaowei Li, F. Han, Cheng-qun Yu, X. Zhang, Jing Sheng Wang, Yongtao He, Z. Zhong
{"title":"额外施氮对青藏高原高山草地生态化学计量的影响:Meta分析","authors":"H. Zhang, Wei Sun, Shaowei Li, F. Han, Cheng-qun Yu, X. Zhang, Jing Sheng Wang, Yongtao He, Z. Zhong","doi":"10.3161/15052249PJE2018.66.4.001","DOIUrl":null,"url":null,"abstract":"ABSTRACT The general impact of extra nitrogen on ecological stoichiometry was examined in alpine grasslands on the Tibetan Plateau. Extra nitrogen increased the ratio of nitrogen to phosphorus (N:P ratio) in leaves and aboveground parts of plants by 43.4% and 32.7%, respectively. In contrast, extra nitrogen reduced the ratio of carbon to nitrogen (C:N ratio) in leaves by 30.6%. Extra nitrogen decreased soil C:N ratio by 9.1% in alpine meadows, but increased soil C:N ratio by 3.4% in alpine steppes. Extra urea had a stronger positive impact on aboveground vegetation N:P ratio than did extra ammonium nitrate. Extra urea rather than ammonium nitrate decreased aboveground vegetation C:N ratio and soil C:N ratio. The impact of extra nitrogen on aboveground vegetation N:P ratio was positively correlated with latitude, mean annual temperature and precipitation, nitrogen application rate and accumulated amount, but negatively correlated with elevation, duration and aboveground vegetation N:P ratio of the control plots. The impact of extra nitrogen on leaves N:P ratio was positively correlated with nitrogen application rate and accumulated amount. The impact of extra nitrogen on leaves C:N ratio was positively correlated with latitude, but negatively correlated with mean annual temperature and precipitation, nitrogen application rate, accumulated amount, duration and leaves C:N ratio of the control plots. Therefore, nitrogen enrichment caused by human activities will most likely alter element balance and alpine plants from nitrogen limitation to phosphorus limitation. This effect may weaken with time, and increase with climatic warming, increased precipitation and nitrogen input rate.","PeriodicalId":49683,"journal":{"name":"Polish Journal of Ecology","volume":"66 1","pages":"315 - 324"},"PeriodicalIF":0.4000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Extra Nitrogen on Ecological Stoichiometry of Alpine Grasslands on Tibetan Plateau: Meta-Analysis\",\"authors\":\"H. Zhang, Wei Sun, Shaowei Li, F. Han, Cheng-qun Yu, X. Zhang, Jing Sheng Wang, Yongtao He, Z. Zhong\",\"doi\":\"10.3161/15052249PJE2018.66.4.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The general impact of extra nitrogen on ecological stoichiometry was examined in alpine grasslands on the Tibetan Plateau. Extra nitrogen increased the ratio of nitrogen to phosphorus (N:P ratio) in leaves and aboveground parts of plants by 43.4% and 32.7%, respectively. In contrast, extra nitrogen reduced the ratio of carbon to nitrogen (C:N ratio) in leaves by 30.6%. Extra nitrogen decreased soil C:N ratio by 9.1% in alpine meadows, but increased soil C:N ratio by 3.4% in alpine steppes. Extra urea had a stronger positive impact on aboveground vegetation N:P ratio than did extra ammonium nitrate. Extra urea rather than ammonium nitrate decreased aboveground vegetation C:N ratio and soil C:N ratio. The impact of extra nitrogen on aboveground vegetation N:P ratio was positively correlated with latitude, mean annual temperature and precipitation, nitrogen application rate and accumulated amount, but negatively correlated with elevation, duration and aboveground vegetation N:P ratio of the control plots. The impact of extra nitrogen on leaves N:P ratio was positively correlated with nitrogen application rate and accumulated amount. The impact of extra nitrogen on leaves C:N ratio was positively correlated with latitude, but negatively correlated with mean annual temperature and precipitation, nitrogen application rate, accumulated amount, duration and leaves C:N ratio of the control plots. Therefore, nitrogen enrichment caused by human activities will most likely alter element balance and alpine plants from nitrogen limitation to phosphorus limitation. This effect may weaken with time, and increase with climatic warming, increased precipitation and nitrogen input rate.\",\"PeriodicalId\":49683,\"journal\":{\"name\":\"Polish Journal of Ecology\",\"volume\":\"66 1\",\"pages\":\"315 - 324\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3161/15052249PJE2018.66.4.001\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3161/15052249PJE2018.66.4.001","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Impact of Extra Nitrogen on Ecological Stoichiometry of Alpine Grasslands on Tibetan Plateau: Meta-Analysis
ABSTRACT The general impact of extra nitrogen on ecological stoichiometry was examined in alpine grasslands on the Tibetan Plateau. Extra nitrogen increased the ratio of nitrogen to phosphorus (N:P ratio) in leaves and aboveground parts of plants by 43.4% and 32.7%, respectively. In contrast, extra nitrogen reduced the ratio of carbon to nitrogen (C:N ratio) in leaves by 30.6%. Extra nitrogen decreased soil C:N ratio by 9.1% in alpine meadows, but increased soil C:N ratio by 3.4% in alpine steppes. Extra urea had a stronger positive impact on aboveground vegetation N:P ratio than did extra ammonium nitrate. Extra urea rather than ammonium nitrate decreased aboveground vegetation C:N ratio and soil C:N ratio. The impact of extra nitrogen on aboveground vegetation N:P ratio was positively correlated with latitude, mean annual temperature and precipitation, nitrogen application rate and accumulated amount, but negatively correlated with elevation, duration and aboveground vegetation N:P ratio of the control plots. The impact of extra nitrogen on leaves N:P ratio was positively correlated with nitrogen application rate and accumulated amount. The impact of extra nitrogen on leaves C:N ratio was positively correlated with latitude, but negatively correlated with mean annual temperature and precipitation, nitrogen application rate, accumulated amount, duration and leaves C:N ratio of the control plots. Therefore, nitrogen enrichment caused by human activities will most likely alter element balance and alpine plants from nitrogen limitation to phosphorus limitation. This effect may weaken with time, and increase with climatic warming, increased precipitation and nitrogen input rate.
期刊介绍:
POLISH JOURNAL OF ECOLOGY (formerly Ekologia polska) publishes original scientific research papers dealing with all aspects of ecology: both fundamental and applied, physiological ecology, evolutionary ecology, ecology of population, community, ecosystem, landscape as well as global ecology. There is no bias regarding taxons, ecosystems or geographical regions.