局部伽罗瓦表示的驯服多重性和导体

IF 0.8 Q2 MATHEMATICS
C. Bushnell, G. Henniart
{"title":"局部伽罗瓦表示的驯服多重性和导体","authors":"C. Bushnell, G. Henniart","doi":"10.2140/tunis.2020.2.337","DOIUrl":null,"url":null,"abstract":"Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$. Let $\\sigma$ be an irreducible smooth representation of the absolute Weil group $\\Cal W_F$ of $F$ and $\\sw(\\sigma)$ the Swan exponent of $\\sigma$. Assume $\\sw(\\sigma) \\ge1$. Let $\\Cal I_F$ be the inertia subgroup of $\\Cal W_F$ and $\\Cal P_F$ the wild inertia subgroup. There is an essentially unique, finite, cyclic group $\\varSigma$, of order prime to $p$, so that $\\sigma(\\Cal I_F) = \\sigma(\\Cal P_F)\\varSigma$. In response to a query of Mark Reeder, we show that the multiplicity in $\\sigma$ of any character of $\\varSigma$ is bounded by $\\sw(\\sigma)$.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2018-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2020.2.337","citationCount":"1","resultStr":"{\"title\":\"Tame multiplicity and conductor for local Galois representations\",\"authors\":\"C. Bushnell, G. Henniart\",\"doi\":\"10.2140/tunis.2020.2.337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$. Let $\\\\sigma$ be an irreducible smooth representation of the absolute Weil group $\\\\Cal W_F$ of $F$ and $\\\\sw(\\\\sigma)$ the Swan exponent of $\\\\sigma$. Assume $\\\\sw(\\\\sigma) \\\\ge1$. Let $\\\\Cal I_F$ be the inertia subgroup of $\\\\Cal W_F$ and $\\\\Cal P_F$ the wild inertia subgroup. There is an essentially unique, finite, cyclic group $\\\\varSigma$, of order prime to $p$, so that $\\\\sigma(\\\\Cal I_F) = \\\\sigma(\\\\Cal P_F)\\\\varSigma$. In response to a query of Mark Reeder, we show that the multiplicity in $\\\\sigma$ of any character of $\\\\varSigma$ is bounded by $\\\\sw(\\\\sigma)$.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2020.2.337\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2020.2.337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2020.2.337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$F$是残差特征为$p$的非阿基米德局部紧致场。设$\sigma$是$F$的绝对Weil群$\Cal W_F$和$\sw(\sigma)$的Swan指数的不可约光滑表示。假设$\sw(\sigma)\ge1$。设$\Cal I_F$是$\Cal W_F$的惯性子群,$\Cal P_F$是野生惯性子群。存在一个本质上唯一的、有限的、循环的群$\varSigma$,其阶素数为$p$,因此$\sigma(\Cal I_F)=\s西格玛(\Cal p_F)\varSigma$。作为对Mark Reeder的查询的回应,我们证明了$\varSigma$的任何字符在$\sigma$中的多重性是由$\sw(\sigma)$限定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tame multiplicity and conductor for local Galois representations
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$. Let $\sigma$ be an irreducible smooth representation of the absolute Weil group $\Cal W_F$ of $F$ and $\sw(\sigma)$ the Swan exponent of $\sigma$. Assume $\sw(\sigma) \ge1$. Let $\Cal I_F$ be the inertia subgroup of $\Cal W_F$ and $\Cal P_F$ the wild inertia subgroup. There is an essentially unique, finite, cyclic group $\varSigma$, of order prime to $p$, so that $\sigma(\Cal I_F) = \sigma(\Cal P_F)\varSigma$. In response to a query of Mark Reeder, we show that the multiplicity in $\sigma$ of any character of $\varSigma$ is bounded by $\sw(\sigma)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信