{"title":"基于fpga的数字量子比特的纠缠与通信","authors":"Bhuvan Hawargi, K. Akshay, Kaustav Bhowmick","doi":"10.2478/jee-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract This paper focuses on usage of digital qubits on a digital quantum computing platform implemented on FPGAs. Modifications have been made to existing digital qubit standards to account for complex probability amplitudes and not only real ones. This paper introduces an improved transient effect ring-oscillator based TRNG used in the scope of this project. The objective of this was to simulate the addition of environmental noise in a digital setting. Using the newly designed digital qubits, a few quantum logic gates have been designed to work on the FPGA platform using Verilog. These logic gates have then been used to implement entanglement on a digital hardware platform. Furthermore, this paper implements communication between two digital quantum computers over both wired and wireless media by transmitting alphabetical messages as qubits and compares the same with transmission involving classical digital bits only.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"74 1","pages":"154 - 166"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entaglement and communication in digital qubits using FPGAs\",\"authors\":\"Bhuvan Hawargi, K. Akshay, Kaustav Bhowmick\",\"doi\":\"10.2478/jee-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper focuses on usage of digital qubits on a digital quantum computing platform implemented on FPGAs. Modifications have been made to existing digital qubit standards to account for complex probability amplitudes and not only real ones. This paper introduces an improved transient effect ring-oscillator based TRNG used in the scope of this project. The objective of this was to simulate the addition of environmental noise in a digital setting. Using the newly designed digital qubits, a few quantum logic gates have been designed to work on the FPGA platform using Verilog. These logic gates have then been used to implement entanglement on a digital hardware platform. Furthermore, this paper implements communication between two digital quantum computers over both wired and wireless media by transmitting alphabetical messages as qubits and compares the same with transmission involving classical digital bits only.\",\"PeriodicalId\":15661,\"journal\":{\"name\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"volume\":\"74 1\",\"pages\":\"154 - 166\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2023-0021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2023-0021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Entaglement and communication in digital qubits using FPGAs
Abstract This paper focuses on usage of digital qubits on a digital quantum computing platform implemented on FPGAs. Modifications have been made to existing digital qubit standards to account for complex probability amplitudes and not only real ones. This paper introduces an improved transient effect ring-oscillator based TRNG used in the scope of this project. The objective of this was to simulate the addition of environmental noise in a digital setting. Using the newly designed digital qubits, a few quantum logic gates have been designed to work on the FPGA platform using Verilog. These logic gates have then been used to implement entanglement on a digital hardware platform. Furthermore, this paper implements communication between two digital quantum computers over both wired and wireless media by transmitting alphabetical messages as qubits and compares the same with transmission involving classical digital bits only.
期刊介绍:
The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising.
-Automation and Control-
Computer Engineering-
Electronics and Microelectronics-
Electro-physics and Electromagnetism-
Material Science-
Measurement and Metrology-
Power Engineering and Energy Conversion-
Signal Processing and Telecommunications