Zhouquan Cai, Xiao Chen, Jiaqing Zhang, Shouxiang Lu
{"title":"考虑不同布局的电缆阵列火灾特性的台架试验研究","authors":"Zhouquan Cai, Xiao Chen, Jiaqing Zhang, Shouxiang Lu","doi":"10.1177/07349041211043238","DOIUrl":null,"url":null,"abstract":"The effect of different cable layouts on the fire behavior of electric cable arrays was experimentally studied. The influence of external heat flux on cable fire characteristics was investigated. Several parameters for electrical cables such as the post-burning morphology, ignition time, heat release rate, peak heat release rate and total heat release were obtained. The results show that cable layouts could affect cable charring degrees according to the post-burning morphology. A linear relationship was found in the transformed form of time to ignition and radiant heat flux, and the critical radiant heat flux value for the single cable array appeared smaller than that for the other two layouts. The peak heat release rate for Cables A–D with the single array presents the increasing trend with an increase in radiant heat flux, while the two parallel and intersectional cable arrays present the different trends. Moreover, the total heat release values of Cables A–D in the different cable layouts were analyzed. This work provides the basic data and preliminary investigation to fire engineering of cable arrays with the different layouts.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bench-scale experimental study on the fire behavior of electric cable arrays by considering different layouts\",\"authors\":\"Zhouquan Cai, Xiao Chen, Jiaqing Zhang, Shouxiang Lu\",\"doi\":\"10.1177/07349041211043238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of different cable layouts on the fire behavior of electric cable arrays was experimentally studied. The influence of external heat flux on cable fire characteristics was investigated. Several parameters for electrical cables such as the post-burning morphology, ignition time, heat release rate, peak heat release rate and total heat release were obtained. The results show that cable layouts could affect cable charring degrees according to the post-burning morphology. A linear relationship was found in the transformed form of time to ignition and radiant heat flux, and the critical radiant heat flux value for the single cable array appeared smaller than that for the other two layouts. The peak heat release rate for Cables A–D with the single array presents the increasing trend with an increase in radiant heat flux, while the two parallel and intersectional cable arrays present the different trends. Moreover, the total heat release values of Cables A–D in the different cable layouts were analyzed. This work provides the basic data and preliminary investigation to fire engineering of cable arrays with the different layouts.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/07349041211043238\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041211043238","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Bench-scale experimental study on the fire behavior of electric cable arrays by considering different layouts
The effect of different cable layouts on the fire behavior of electric cable arrays was experimentally studied. The influence of external heat flux on cable fire characteristics was investigated. Several parameters for electrical cables such as the post-burning morphology, ignition time, heat release rate, peak heat release rate and total heat release were obtained. The results show that cable layouts could affect cable charring degrees according to the post-burning morphology. A linear relationship was found in the transformed form of time to ignition and radiant heat flux, and the critical radiant heat flux value for the single cable array appeared smaller than that for the other two layouts. The peak heat release rate for Cables A–D with the single array presents the increasing trend with an increase in radiant heat flux, while the two parallel and intersectional cable arrays present the different trends. Moreover, the total heat release values of Cables A–D in the different cable layouts were analyzed. This work provides the basic data and preliminary investigation to fire engineering of cable arrays with the different layouts.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).