A. Subki, Z. Manap, Mohd Zaidi Mohd Tumari, A. Z. Jidin, Shahrizal Saat, A. F. Z. Abidin, M. Saealal
{"title":"基于正弦和三次谐波注入脉宽调制的移电平和移相调制技术的三相级联h桥多电平逆变器分析","authors":"A. Subki, Z. Manap, Mohd Zaidi Mohd Tumari, A. Z. Jidin, Shahrizal Saat, A. F. Z. Abidin, M. Saealal","doi":"10.11591/IJPEDS.V12.I1.PP160-169","DOIUrl":null,"url":null,"abstract":"This work proposes a comparative analysis of sinusoidal and third harmonic injected reference signal modulation accompany with level-shifted PWM technique named as phase disposition (LSPD), phase opposition disposition (LSPOD), and alternate phase opposition disposition (LSAPOD) and phase-shifted PWM technique. Switching pulses from both reference signal and PWM technique have been fed into three phase eleven level cascaded H-bridge multilevel inverter (CHBMLI) fed on a resistive-inductive load with the modulation depth (MD) set to varied from 80% to 100%. For voltage source inverter, total harmonic distortion (THD) content is critical and must be within the allowable range. To prove the feasibility of the reference signal with carrier signal schemes, the entire simulation of the modulation techniques is established and conducted via the Simulink environment. According to the analyzed result, the performance is acceptable in terms of %THDV and %THDI values. Simulation analysis also indicates, at full modulation depth, due to higher fundamental output voltage component produces via the THIPWM modulation technique compared to the SPWM technique, this causes higher %THDV value.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"160-169"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis on three phase cascaded H-bridge multilevel inverter based on sinusoidal and third harmonic injected pulse width modulation via level shifted and phase shifted modulation technique\",\"authors\":\"A. Subki, Z. Manap, Mohd Zaidi Mohd Tumari, A. Z. Jidin, Shahrizal Saat, A. F. Z. Abidin, M. Saealal\",\"doi\":\"10.11591/IJPEDS.V12.I1.PP160-169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a comparative analysis of sinusoidal and third harmonic injected reference signal modulation accompany with level-shifted PWM technique named as phase disposition (LSPD), phase opposition disposition (LSPOD), and alternate phase opposition disposition (LSAPOD) and phase-shifted PWM technique. Switching pulses from both reference signal and PWM technique have been fed into three phase eleven level cascaded H-bridge multilevel inverter (CHBMLI) fed on a resistive-inductive load with the modulation depth (MD) set to varied from 80% to 100%. For voltage source inverter, total harmonic distortion (THD) content is critical and must be within the allowable range. To prove the feasibility of the reference signal with carrier signal schemes, the entire simulation of the modulation techniques is established and conducted via the Simulink environment. According to the analyzed result, the performance is acceptable in terms of %THDV and %THDI values. Simulation analysis also indicates, at full modulation depth, due to higher fundamental output voltage component produces via the THIPWM modulation technique compared to the SPWM technique, this causes higher %THDV value.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"12 1\",\"pages\":\"160-169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V12.I1.PP160-169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP160-169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Analysis on three phase cascaded H-bridge multilevel inverter based on sinusoidal and third harmonic injected pulse width modulation via level shifted and phase shifted modulation technique
This work proposes a comparative analysis of sinusoidal and third harmonic injected reference signal modulation accompany with level-shifted PWM technique named as phase disposition (LSPD), phase opposition disposition (LSPOD), and alternate phase opposition disposition (LSAPOD) and phase-shifted PWM technique. Switching pulses from both reference signal and PWM technique have been fed into three phase eleven level cascaded H-bridge multilevel inverter (CHBMLI) fed on a resistive-inductive load with the modulation depth (MD) set to varied from 80% to 100%. For voltage source inverter, total harmonic distortion (THD) content is critical and must be within the allowable range. To prove the feasibility of the reference signal with carrier signal schemes, the entire simulation of the modulation techniques is established and conducted via the Simulink environment. According to the analyzed result, the performance is acceptable in terms of %THDV and %THDI values. Simulation analysis also indicates, at full modulation depth, due to higher fundamental output voltage component produces via the THIPWM modulation technique compared to the SPWM technique, this causes higher %THDV value.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.