基于重要性抽样和克里格模型的风机主轴可靠性分析策略

IF 3.5 Q1 ENGINEERING, MULTIDISCIPLINARY
L. Ling, Yan Li, Sicheng Fu
{"title":"基于重要性抽样和克里格模型的风机主轴可靠性分析策略","authors":"L. Ling, Yan Li, Sicheng Fu","doi":"10.1108/ijsi-01-2022-0006","DOIUrl":null,"url":null,"abstract":"PurposeWhen dealing with simple functional functions, traditional reliability calculation methods, such as the linear second-order moment and quadratic second ordered moment, Monte Carlo simulation method, are powerful. However, when the functional function of the structure shows strong nonlinearity or even implicit, traditional methods often fail to meet the actual needs of engineering in terms of calculation accuracy or efficiency.Design/methodology/approachTo improve the reliability analysis efficiency and calculation accuracy of complex structures, the reliability analysis methods based on parametric and semi-parametric models are analyzed.FindingsThis paper proposes a reliability method that combines the Kriging model and the importance sampling method to improve the calculation efficiency of traditional reliability analysis methods.Originality/valueThis method uses an active learning function and introduces an importance sampling method to screen sample points and shift the center of gravity, thereby reducing the sample size and the amount of calculation.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A reliability analysis strategy for main shaft of wind turbine using importance sampling and Kriging model\",\"authors\":\"L. Ling, Yan Li, Sicheng Fu\",\"doi\":\"10.1108/ijsi-01-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeWhen dealing with simple functional functions, traditional reliability calculation methods, such as the linear second-order moment and quadratic second ordered moment, Monte Carlo simulation method, are powerful. However, when the functional function of the structure shows strong nonlinearity or even implicit, traditional methods often fail to meet the actual needs of engineering in terms of calculation accuracy or efficiency.Design/methodology/approachTo improve the reliability analysis efficiency and calculation accuracy of complex structures, the reliability analysis methods based on parametric and semi-parametric models are analyzed.FindingsThis paper proposes a reliability method that combines the Kriging model and the importance sampling method to improve the calculation efficiency of traditional reliability analysis methods.Originality/valueThis method uses an active learning function and introduces an importance sampling method to screen sample points and shift the center of gravity, thereby reducing the sample size and the amount of calculation.\",\"PeriodicalId\":45359,\"journal\":{\"name\":\"International Journal of Structural Integrity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijsi-01-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-01-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

目的在处理简单的函数函数时,传统的可靠度计算方法如线性二阶矩和二次二阶矩、蒙特卡罗模拟法等具有很强的功能。然而,当结构的功能函数表现出较强的非线性甚至隐式时,传统方法的计算精度或效率往往不能满足工程的实际需要。为提高复杂结构的可靠性分析效率和计算精度,分析了基于参数模型和半参数模型的可靠性分析方法。本文提出了一种将Kriging模型与重要抽样法相结合的可靠性分析方法,提高了传统可靠性分析方法的计算效率。原创性/价值本方法采用主动学习函数,引入重要性抽样方法,筛选样本点,转移重心,减少样本量,减少计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reliability analysis strategy for main shaft of wind turbine using importance sampling and Kriging model
PurposeWhen dealing with simple functional functions, traditional reliability calculation methods, such as the linear second-order moment and quadratic second ordered moment, Monte Carlo simulation method, are powerful. However, when the functional function of the structure shows strong nonlinearity or even implicit, traditional methods often fail to meet the actual needs of engineering in terms of calculation accuracy or efficiency.Design/methodology/approachTo improve the reliability analysis efficiency and calculation accuracy of complex structures, the reliability analysis methods based on parametric and semi-parametric models are analyzed.FindingsThis paper proposes a reliability method that combines the Kriging model and the importance sampling method to improve the calculation efficiency of traditional reliability analysis methods.Originality/valueThis method uses an active learning function and introduces an importance sampling method to screen sample points and shift the center of gravity, thereby reducing the sample size and the amount of calculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Structural Integrity
International Journal of Structural Integrity ENGINEERING, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
14.80%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信